Prognostic Value of Feature-Tracking Circumferential Strain in Dilated Cardiomyopathy Patients with Severely Reduced Ejection Fraction Incremental to Late Gadolinium Enhancement

Sheng-lei Shu , Jing Wang , Cheng Wang , Feng Zhu , Yu-xi Jia , Lan Zhang , Xiao-yue Zhou , Tian-jing Zhang , Chuan-sheng Zheng

Current Medical Science ›› 2021, Vol. 41 ›› Issue (1) : 158 -166.

PDF
Current Medical Science ›› 2021, Vol. 41 ›› Issue (1) : 158 -166. DOI: 10.1007/s11596-021-2331-4
Article

Prognostic Value of Feature-Tracking Circumferential Strain in Dilated Cardiomyopathy Patients with Severely Reduced Ejection Fraction Incremental to Late Gadolinium Enhancement

Author information +
History +
PDF

Abstract

Myocardial fiber deformation measurements have been reported to be associated with adverse outcomes in patients with acute heart failure and those with myocardial infarction. However, few studies have addressed the prognostic value of global circumferential strain (GCS) in dilated cardiomyopathy (DCM) patients with severely impaired systolic function. This study aimed to evaluate the prognostic value of cardiac magnetic resonance (CMR)-derived GCS in DCM patients with severely reduced ejection. Consecutive DCM patients with severely reduced ejection fraction (EF <35%) who underwent CMR were included. GCS was calculated from CMR cine images. The clinical endpoint was a composite of all-cause mortality, heart transplantation, implantable cardioverter defibrillator (ICD) implantation and aborted sudden cardiac death (SCD). A total of 129 patients with a mean EF of 15.33% (11.36%–22.27%) were included. During a median follow-up of 518 days, endpoint events occurred in 50 patients. Patients with GCS ≥ the median (−5.17%) had significantly reduced event-free survival as compared with those with GCS < the median (P<0.01). GCS was independently associated with adverse events after adjusting for clinical and imaging risk factors including extent of late gadolinium enhancement (LGE) (P<0.05). Adding GCS into the model including the extent of LGE resulted in significant improvements in the C-statistic (from 0.706 to 0.742; P<0.05) with a continuous net reclassification improvement (NRI) of 29.71%. It was concluded that GCS derived from CMR could be useful for risk stratification in DCM patients with severely reduced EF, which may increase common imaging risk factors including LGE.

Keywords

cardiac magnetic resonance imaging / circumferential strain / prognosis / late gadolinium enhancement / dilated cardiomyopathy

Cite this article

Download citation ▾
Sheng-lei Shu, Jing Wang, Cheng Wang, Feng Zhu, Yu-xi Jia, Lan Zhang, Xiao-yue Zhou, Tian-jing Zhang, Chuan-sheng Zheng. Prognostic Value of Feature-Tracking Circumferential Strain in Dilated Cardiomyopathy Patients with Severely Reduced Ejection Fraction Incremental to Late Gadolinium Enhancement. Current Medical Science, 2021, 41(1): 158-166 DOI:10.1007/s11596-021-2331-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JefferiesJL, TowbinJA. Dilated cardiomyopathy. Lancet, 2010, 375(9716): 752-762

[2]

KusumotoFM, CalkinsH, BoehmerJ, et al.. HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation, 2014, 130(1): 94-125

[3]

KøberL, ThuneJJ, NielsenJC, et al.. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med, 2016, 375(13): 1221-1230

[4]

HallidayBP, ClelandJGF, GoldbergerJJ, et al.. Personalizing Risk Stratification for Sudden Death in Dilated Cardiomyopathy: The Past, Present, and Future. Circulation, 2017, 136(2): 215-231

[5]

MitropoulouP, GeorgiopoulosG, FigliozziS, et al.. Multi-Modality Imaging in Dilated Cardiomyopathy: With a Focus on the Role of Cardiac Magnetic Resonance. Front Cardiovasc Med, 2020, 7: 97

[6]

BeckerMAJ, CornelJH, van de VenPM, et al.. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis. JACC Cardiovasc Imaging, 2018, 11(9): 1274-1284

[7]

BarisonA, AimoA, OrtaldaA, et al.. Late gadolinium enhancement as a predictor of functional recovery, need for defibrillator implantation and prognosis in non-ischemic dilated cardiomyopathy. Int J Cardiol, 2018, 250: 195-200

[8]

WangJ, KhouryDS, YueY, et al.. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J, 2008, 29(10): 1283-1289

[9]

TaylorRJ, MoodyWE, UmarF, et al.. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging, 2015, 16(8): 871-881

[10]

RiffelJH, KellerMG, RostF, et al.. Left ventricular long axis strain: a new prognosticator in non-ischemic dilated cardiomyopathy?. J Cardiovasc Magn Reson, 2016, 18(1): 36

[11]

RomanoS, JuddRM, KimRJ, et al.. Association of Feature-Tracking Cardiac Magnetic Resonance Imaging Left Ventricular Global Longitudinal Strain With All-Cause Mortality in Patients With Reduced Left Ventricular Ejection Fraction. Circulation, 2017, 135(23): 2313-2315

[12]

PaimanEHM, AndroulakisAFA, ShahzadR, et al.. Association of cardiovascular magnetic resonance-derived circumferential strain parameters with the risk of ventricular arrhythmia and all-cause mortality in patients with prior myocardial infarction and primary prevention implantable cardioverter defibrillator. J Cardiovasc Magn Reson, 2019, 21(1): 28

[13]

RomanoS, JuddRM, KimRJ, et al.. Feature-Tracking Global Longitudinal Strain Predicts Mortality in Patients With Preserved Ejection Fraction: A Multicenter Study. JACC Cardiovasc Imaging, 2020, 13(4): 940-947

[14]

ChoGY, MarwickTH, KimHS, et al.. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol, 2009, 54(7): 618-624

[15]

HungCL, VermaA, UnoH, et al.. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol, 2010, 56(22): 1812-1822

[16]

Schulz-MengerJ, BluemkeDA, BremerichJ, et al.. Standardized image interpretation and post-processing in cardiovascular magnetic resonance — 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson, 2020, 22(1): 19

[17]

PrioriSG, Blomström-LundqvistC, MazzantiA, et al.. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J, 2015, 36(41): 2793-2867

[18]

ChimuraM, OnishiT, TsukishiroY, et al.. Longitudinal strain combined with delayed-enhancement magnetic resonance improves risk stratification in patients with dilated cardiomyopathy. Heart, 2017, 103(9): 679-686

[19]

RomanoS, JuddRM, KimRJ, et al.. Feature-Tracking Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients with Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and Late Gadolinium Enhancement. JACC Cardiovasc Imaging, 2018, 11(10): 1419-1429

[20]

ChoiEY, RosenBD, FernandesVR, et al.. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J, 2013, 34(30): 2354-2361

[21]

MordiI, BezerraH, CarrickD, et al.. The Combined Incremental Prognostic Value of LVEF, Late Gadolinium Enhancement, and Global Circumferential Strain Assessed by CMR. JACC Cardiovasc Imaging, 2015, 8(5): 540-549

[22]

MewtonN, LiuCY, CroisilleP, et al.. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol, 2011, 57(8): 891-903

[23]

AssomullRG, PrasadSK, LyneJ, et al.. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol, 2006, 48(10): 1977-1985

[24]

MasciPG, SchuurmanR, AndreaB, et al.. Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study. Circ Cardiovasc Imaging, 2013, 6(5): 790-799

[25]

DisertoriM, RigoniM, PaceN, et al.. Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV Dysfunction: A Meta-Analysis. JACC Cardiovasc Imaging, 2016, 9(9): 1046-1055

[26]

HallidayBP, BaksiAJ, GulatiA, et al.. Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC Cardiovasc Imaging, 2019, 12(8): 1645-1655 Pt 2

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/