Oleic Acid (OA), A Potential Dual Contrast Agent for Postmortem MR Angiography (PMMRA): A Pilot Study

Zhi-yuan Xia , Christine Bruguier , Fabrice Dedouit , Silke Grabherr , Marc Augsburger , Bei-bei Liu

Current Medical Science ›› 2020, Vol. 40 ›› Issue (4) : 786 -794.

PDF
Current Medical Science ›› 2020, Vol. 40 ›› Issue (4) : 786 -794. DOI: 10.1007/s11596-020-2244-7
Article

Oleic Acid (OA), A Potential Dual Contrast Agent for Postmortem MR Angiography (PMMRA): A Pilot Study

Author information +
History +
PDF

Abstract

Choosing proper perfusates as contrast agents is an important aspect for postmortem magnetic resonance angiography (PMMRA). However, in this emerging field, the number of suitable kinds of liquid is still very limited. The objective of this research is to compare MR images of oleic acid (OA) with paraffin oil (PO) in vitro and in ex situ animal hearts, in order to evaluate the feasibility to use OA as a novel contrast agent for PMMRA. In vitro, OA, PO and water (control) were introduced into three tubes separately and T1weighted-spin echo (T1w-SE) and T2w-SE images were acquired on a 1.5T MR scanner. In the second experiment, OA and PO were injected into left coronary artery (LCA) and left ventricle (LV) of ex situ bovine hearts and their T1w-SE, T2w-SE, T1w-multipoint Dixon (T1w-mDixon) and 3DT2w-mDixon images were acquired. The overall results indicate that OA may have a potential to be used as a dual (T1 and T2 based) contrast agent for PMMRA when proper sequence parameters are utilized. However, as the pilot study was based on limited number of animal hearts, more researches using OA in cadavers are needed to validate our findings.

Keywords

postmortem magnetic resonance angiography / perfusate / contrast agent / oleic acid / paraffin oil / heart

Cite this article

Download citation ▾
Zhi-yuan Xia, Christine Bruguier, Fabrice Dedouit, Silke Grabherr, Marc Augsburger, Bei-bei Liu. Oleic Acid (OA), A Potential Dual Contrast Agent for Postmortem MR Angiography (PMMRA): A Pilot Study. Current Medical Science, 2020, 40(4): 786-794 DOI:10.1007/s11596-020-2244-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmpanoziG, HalbheerD, EbertLC, et al.. Postmortem imaging findings and cause of death determination compared with autopsy: a systematic review of diagnostic test accuracy and meta-analysis. Int J Legal Med, 2020, 134(1): 321-337

[2]

GrabherrS, HeinemannA, VogelH, et al.. Postmortem CT angiography compared with autopsy: A forensic multicenter study. Radiology, 2018, 288(1): 270-276

[3]

MichaudK, GenetP, SabatassoS, et al.. Postmortem imaging as a complementary tool for the investigation of cardiac death. Forensic Sci Res, 2019, 4(3): 211-222

[4]

RuttyGN, MorganB, RobinsonC, et al.. Diagnostic accuracy of post-mortem CT with targeted coronary angiography versus autopsy for coroner-requested post-mortem investigations: a prospective, masked, comparison study. Lancet, 2017, 390(10090): 145-154

[5]

BaglivoM, WinklhoferS, HatchGM, et al.. The rise of forensic and post-mortem radiology—Analysis of the literature between the year 2000 and 2011. J Forensic Radiol Imaging, 2013, 1(1): 3-9

[6]

HallF, ForbesS, RowbothamS, et al.. Using PMCT of Individuals of Known Age to Test the Suchey-Brooks Method of Aging in Victoria, Australia. J Forensic Sci, 2019, 64(6): 1782-1787

[7]

OkudaT, ShiotaniS, SakamotoN, et al.. Background and current status of postmortem imaging in Japan: short history of “Autopsy imaging (Ai)”. Forensic Sci Int, 2013, 225(1–3): 3-8

[8]

RuttyGN, BrogdonG, DedouitF, et al.. Terminology used in publications for post-mortem cross-sectional imaging. Int J Legal Med, 2013, 127(2): 465-466

[9]

AmpanoziG, ThaliYA, SchweitzerW, et al.. Accuracy of non-contrast PMCT for determining cause of death. Forensic Sci Med Pathol, 2017, 13(3): 284-292

[10]

CartocciG, SanturroA, NeriM, et al.. Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies. Radiol Med, 2019, 124(10): 1018-1027

[11]

Del FanteZ, De MatteisA, FazioV, et al.. The importance of Post Mortem Computed Tomography (PMCT) in the reconstruction of the bullet trajectory. Clin Ter, 2019, 170(2): e129-e133

[12]

FilogranaL, FlachPM, BolligerSA, et al.. The role of post-mortem CT (PMCT) imaging in the diagnosis of pericardial tamponade due to hemopericardium: A case report. Leg Med (Tokyo), 2014, 16(3): 150-153

[13]

OkudaT, ShiotaniS, KobayashiT, et al.. Possibility of visualization of gastrothorax based on unenhanced postmortem computed tomography/PMCT. Leg Med (Tokyo), 2015, 17(6): 521-524

[14]

GrabherrS, EggerC, VilarinoR, et al.. Modern postmortem imaging: an update on recent developments. Forensic Sci Res, 2017, 2(2): 52-64

[15]

SabatassoS, VanhaebostJ, DoenzF, et al.. Visualization of Myocardial Infarction in Postmortem Multiphase Computed Tomography Angiography: A Feasibility Study. Am J Forensic Med Pathol, 2018, 39(2): 106-113

[16]

BruguierC, MosimannPJ, VaucherP, et al.. Multi-phase postmortem CT angiography: recognizing technique-related artefacts and pitfalls. Int J Legal Med, 2013, 127(3): 639-652

[17]

GrabherrS, DoenzF, StegerB, et al.. Multi-phase postmortem CT angiography: development of a standardized protocol. Int J Legal Med, 2011, 125(6): 791-802

[18]

MorganB, BiggsMJ, BarberJ, et al.. Accuracy of targeted post-mortem computed tomography coronary angiography compared to assessment of serial histological sections. Int J Legal Med, 2013, 127(4): 809-817

[19]

RuttyG, SaundersS, MorganB, et al.. Targeted cardiac post-mortem computed tomography angiography: a pictorial review. Forensic Sci Med Pathol, 2012, 8(1): 40-47

[20]

SaundersSL, MorganB, RajV, et al.. Targeted postmortem computed tomography cardiac angiography: proof of concept. Int J Legal Med, 2011, 125(4): 609-616

[21]

BruguierC, EggerC, ValleeJP, et al.. Postmortem magnetic resonance imaging of the heart ex situ: development of technical protocols. Int J Legal Med, 2015, 129(3): 559-567

[22]

JackowskiC, SchwendenerN, GrabherrS, et al.. Postmortem cardiac 3-T magnetic resonance imaging: visualization of sudden cardiac death?. J Am Coll Cardiol, 2013, 62(7): 617-629

[23]

RuderTD, ThaliMJ, HatchGM. Essentials of forensic post-mortem MR imaging in adults. Br J Radiol, 2014, 87(1036): 20130567

[24]

TschuiJ, JackowskiC, SchwendenerN, et al.. Postmortem CT and MR brain imaging of putrefied corpses. Int J Legal Med, 2016, 130(4): 1061-1068

[25]

ZechWD, HottingerAL, SchwendenerN, et al.. Postmortem 1.5T MR quantification of regular anatomical brain structures. Int J Legal Med, 2016, 130(4): 1071-1080

[26]

ZechWD, SchwendenerN, PerssonA, et al.. Postmortem MR quantification of the heart for characterization and differentiation of ischaemic myocardial lesions. Eur Radiol, 2015, 25(7): 2067-2073

[27]

ZechWD, SchwendenerN, PerssonA, et al.. Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol, 2015, 25(8): 2381-2389

[28]

RuderTD, HatchGM, EbertLC, et al.. Whole body postmortem magnetic resonance angiography. J Forensic Sci, 2012, 57(3): 778-782

[29]

WebbB, WidekT, NeumayerB, et al.. Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in postmortem MR angiography (PMMRA). Int J Legal Med, 2017, 131(3): 739-749

[30]

WebbB, WidekT, ScheicherS, et al.. Post-mortem MR angiography: quantitative investigation and intravascular retention of perfusates in ex situ porcine hearts. Int J Legal Med, 2018, 132(2): 579-587

[31]

National Center for Biotechnology Information. PubChem Database. Oleic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-acid. (accessed on Sept. 27, 2019)

[32]

CarrilloC, Cavia MdelM, Alonso-TorreS. Role of oleic acid in immune system; mechanism of action; a review. Nutr Hosp, 2012, 27(4): 978-990

[33]

CarrilloC, Cavia MdelM, Alonso-TorreS R. Antitumor effect of oleic acid; mechanisms of action: a review. Nutr Hosp, 2012, 27(6): 1860-1865

[34]

TeresS, Barcelo-CoblijnG, BenetM, et al.. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA, 2008, 105(37): 13 811-13 816

[35]

SagdeevD, GabitovI, IsyanovC, et al.. Densities and Viscosities of Oleic Acid at Atmospheric Pressure. J Am Oil Chem Soc, 2019, 96(6): 647-662

[36]

DedouitF, BaumannP, BruguierC, et al.. Postmortale Magnetresonanztomographie-Angiographie nach Multiphasen-Computertomographie-Angiographie. Rechtsmedizin, 2017, 27(5): 421-426

[37]

ScienceDirect. Learn more about Paraffin. https://www.sciencedirect.com/topics/chemical-engineering/paraffin. (accessed on Sept. 27, 2019)

[38]

GoldGE, EricH, JeffS, et al.. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Ajr Am J Roentgenol, 2004, 183(2): 343-351

[39]

StaniszGJ, OdrobinaEE, PunJ, et al.. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med, 2005, 54(3): 507-512

[40]

AdolphiN, GerrardC, HatchG, et al.. Determining the temperature-dependence of tissue relaxation times (T1 and T2) for prospective optimization of post-mortem magnetic resonance (PMMR) image contrast. J Forensic Radiol Imaging, 2013, 1(2): 80

[41]

RuderTD, HatchGM, SiegenthalerL, et al.. The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol, 2012, 81(6): 1366-1370

[42]

ZechWD, SchwendenerN, PerssonA, et al.. Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol, 2015, 25(8): 2381

[43]

Westbrook C, Roth CK, Talbot J. MRI in Practice Fourth Edition. Blackwell Publishing Ltd, 2019

[44]

JeongHK, LeeKH, MinHK, et al.. Signal Intensity of Contrast Enhancement according to TE in 3.0T MRI T1 Imaging. App Sci, 2018, 8(7): 1138

[45]

BermanP, MeiriN, ColnagoLA, et al.. Study of liquidphase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnol Biofuels, 2015, 8(1): 12

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/