Vascular Metabolic Mechanisms of Pulmonary Hypertension

Xiao-fan Shi , Yun-chao Su

Current Medical Science ›› 2020, Vol. 40 ›› Issue (3) : 444 -454.

PDF
Current Medical Science ›› 2020, Vol. 40 ›› Issue (3) : 444 -454. DOI: 10.1007/s11596-020-2198-9
Article

Vascular Metabolic Mechanisms of Pulmonary Hypertension

Author information +
History +
PDF

Abstract

Pulmonary hypertension (PH) is a severe and progressive disease characterized by increased pulmonary vascular resistance leading to right heart failure and death. In PH, the cellular metabolisms including those of the three major nutrients (carbohydrate, lipid and protein) are aberrant in pulmonary vascular cells. Glucose uptake, glycolysis, insulin resistance, sphingolipid S1P, PGE2, TXA2, leukotrienes and glutaminolysis are upregulated, and phospholipid-prostacyclin and L-arginine-nitric oxide pathway are compromised in lung vascular cells. Fatty acid metabolism is disordered in lung endothelial cells and smooth muscle cells. These molecular mechanisms are integrated to promote PH-specific abnormal vascular cell proliferation and vascular remodeling. This review summarizes the recent advances in the metabolic reprogramming of glucose, fatty acid, and amino acid metabolism in pulmonary vascular remodeling in PH and the mechanisms for how these alterations affect vascular cell fate and impact the course of PH.

Keywords

pulmonary hypertension / metabolism / vascular remodeling / proliferation

Cite this article

Download citation ▾
Xiao-fan Shi, Yun-chao Su. Vascular Metabolic Mechanisms of Pulmonary Hypertension. Current Medical Science, 2020, 40(3): 444-454 DOI:10.1007/s11596-020-2198-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RuoppNF, FarberHW. The New World Symposium on Pulmonary Hypertension Guidelines. Circulation, 2019, 140(14): 1134-1136

[2]

GalièN, McLaughlinVV, RubinLJ, et al.. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur Respir J, 2019, 53(1): 1802148

[3]

SimonneauG, GatzoulisMA, AdatiaI, et al.. Updated Clinical Classification of Pulmonary Hypertension. J Am Coll Cardiol, 2013, 62(25Suppl): D34-41

[4]

LaneKB, MachadoRD, PauciuloMW, et al.. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet, 2000, 26(1): 81-84

[5]

HarrisonRE, FlanaganJA, SankeloM, et al.. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet, 2003, 40(12): 865-871

[6]

BaraunaVG, MagalhaesFC, CamposLC, et al.. Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms. Biochem Biophys Res Commun, 2013, 434(3): 647-652

[7]

RothmanRB, AyestasMA, DerschCM, et al.. Aminorex, Fenfluramine, and Chlorphentermine Are Serotonin Transporter Substrates. Circulation, 1999, 100(8): 869-875

[8]

SchermulyRT, GhofraniHA, WilkinsMR, et al.. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol, 2011, 8(8): 443-455

[9]

BudhirajaR, TuderRM, HassounPM. Endothelial Dysfunction in Pulmonary Hypertension. Circulation, 2004, 109(2): 159-165

[10]

TonelliAR, ArelliV, MinaiOA, et al.. Causes and Circumstances of Death in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2013, 188(3): 365-369

[11]

van de VeerdonkMC, KindT, MarcusJT, et al.. Progressive Right Ventricular Dysfunction in Patients With Pulmonary Arterial Hypertension Responding to Therapy. J Am Coll Cardiol, 2011, 58(24): 2511-2519

[12]

ThompsonAAR, LawrieA. Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med, 2017, 23(1): 31-45

[13]

ThenappanT, OrmistonML, RyanJJ, et al.. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ, 2018, 360: j5492

[14]

ZhangH, WangD, LiM, et al.. Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis. Circulation, 2017, 136(25): 2468-2485

[15]

LiM, RiddleS, ZhangH, et al.. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1. Circulation, 2016, 134(15): 1105-1121

[16]

FesselJP, HamidR, WittmannBM, et al.. Metabolomic Analysis of Bone Morphogenetic Protein Receptor Type 2 Mutations in Human Pulmonary Endothelium Reveals Widespread Metabolic Reprogramming. Pulm Circ, 2012, 2(2): 201-213

[17]

XuW, KoeckT, LaraAR, et al.. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci, 2007, 104(4): 1342-1347

[18]

VazquezA, KamphorstJJ, MarkertEK, et al.. Cancer metabolism at a glance. J Cell Sci, 2016, 129(18): 3367-3373

[19]

PavlovaNN, ThompsonCB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 2016, 23(1): 27-47

[20]

SutendraG, MichelakisED. The Metabolic Basis of Pulmonary Arterial Hypertension. Cell Metab, 2014, 19(4): 558-573

[21]

RhoadesR. Net uptake of glucose, glycerol, and fatty acids by the isolated perfused rat lung. Am J Physiol, 1974, 226(1): 144-149

[22]

BolañosJP, AlmeidaA, MoncadaS. Glycolysis: a bioenergetic or a survival pathway?. Trends Biochem Sci, 2010, 35(3): 145-149

[23]

GuignabertC, TuL, Le HiressM, et al.. Pathogenesis of pulmonary arterial hypertension: lessons from cancer. Eur Resp Rev, 2013, 22(130): 543-551

[24]

ArcherSL. Pyruvate Kinase and Warburg Metabolism in Pulmonary Arterial Hypertension. Circulation, 2017, 136(25): 2486-2490

[25]

HaganG, SouthwoodM, TreacyC, et al.. (18)FDG PET Imaging can Quantify Increased Cellular Metabolism in Pulmonary Arterial Hypertension: A Proof-of-Principle Study. Pulm Circ, 2011, 1(4): 448-455

[26]

ZhaoL, AshekA, WangL, et al.. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation, 2013, 128(11): 1214-1224

[27]

PrigioneA, RohwerN, HoffmannS, et al.. HIF1α Modulates Cell Fate Reprogramming Through Early Glycolytic Shift and Upregulation of PDK1–3 and PKM2. Stem Cells, 2014, 32(2): 364-376

[28]

KimJW, TchernyshyovI, SemenzaGL, et al.. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006, 3(3): 177-185

[29]

HarveyLD, ChanSY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med, 2017, 6(4): 43

[30]

McMurtryMS, BonnetS, WuX, et al.. Dichloroacetate Prevents and Reverses Pulmonary Hypertension by Inducing Pulmonary Artery Smooth Muscle Cell Apoptosis. Circ Res, 2004, 95(8): 830-840

[31]

PiaoL, FangYH, CadeteVJJ, et al.. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med, 2010, 88(1): 47-60

[32]

MichelakisED, McMurtryMS, WuXC, et al.. Dichloroacetate, a Metabolic Modulator, Prevents and Reverses Chronic Hypoxic Pulmonary Hypertension in Rats. Circulation, 2002, 105(2): 244-250

[33]

PiaoL, SidhuVK, FangYH, et al.. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J Mol Med (Berlin, Germany), 2013, 91(3): 333-346

[34]

MichelakisED, GurtuV, WebsterL, et al.. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci Transl Med, 2017, 9(413): eaao4583

[35]

MarsboomG, WietholtC, HaneyCR, et al.. Lung 18F-Fluorodeoxyglucose Positron Emission Tomography for Diagnosis and Monitoring of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2012, 85(6): 670-679

[36]

CaoY, ZhangX, WangL, et al.. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci, 2019, 116(27): 13 394-13 403

[37]

KovacsL, CaoY, HanW, et al.. PFKFB3 in Smooth Muscle Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2019, 200(5): 617-627

[38]

LuoW, HuH, ChangR, et al.. Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1. Cell, 2011, 145(5): 732-744

[39]

CarusoP, DunmoreBJ, SchlosserK, et al.. Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation, 2017, 136(25): 2451-2467

[40]

ChenY, ZhaoX, WuH. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus. Arterioscler Thromb Vasc Biol, 2019, 39(10): 1911-1924

[41]

AytekinM, ComhairSAA, MotteC, et al.. High levels of hyaluronan in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol, 2008, 295(5): L789-L799

[42]

LauerME, AytekinM, ComhairSA, et al.. Modification of Hyaluronan by Heavy Chains of Inter-α-Inhibitor in Idiopathic Pulmonary Arterial Hypertension. J Biolog Chem, 2014, 289(10): 6791-6798

[43]

BarnesJW, TianLP, HeresiGA, et al.. O-Linked beta-N-Acetylglucosamine Transferase Directs Cell Proliferation in Idiopathic Pulmonary Arterial Hypertension. Circulation, 2015, 131(14): 1260-1268

[44]

KahnSE, HullRL, UtzschneiderKM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121): 840-846

[45]

HeresiGA, MalinSK, BarnesJW, et al.. Abnormal Glucose Metabolism and High-Energy Expenditure in Idiopathic Pulmonary Arterial Hypertension. Ann Am Thoracic Soc, 2017, 14(2): 190-199

[46]

GrinnanD, FarrG, FoxA, et al.. The Role of Hyperglycemia and Insulin Resistance in the Development and Progression of Pulmonary Arterial Hypertension. J Diabetes Res, 2016, 2016: 2481659

[47]

FriedmanSE, AndrusBW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obesity, 2012, 2012: 505274

[48]

HansmannG, WagnerRA, SchellongS, et al.. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptorgamma activation. Circulation, 2007, 115(10): 1275-1284

[49]

HansmannG, RabinovitchM. The protective role of adiponectin in pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol, 2010, 298(1): L1-L2

[50]

WestJ, NiswenderKD, JohnsonJA, et al.. A potential role for insulin resistance in experimental pulmonary hypertension. Eur Respir J, 2013, 41(4): 861-871

[51]

TrammellAW, TalatiM, BlackwellTR, et al.. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ, 2017, 7(3): 624-634

[52]

Morales-CanoD, CallejoM, BarreiraB, et al.. Elevated pulmonary arterial pressure in Zucker diabetic fatty rats. PLoS One, 2019, 14(1): e0211281

[53]

PughME, RobbinsIM, RiceTW, et al.. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant, 2011, 30(8): 904-911

[54]

HemnesAR, LutherJM, RhodesCJ, et al.. Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4(1): e123611

[55]

AbernethyAD, StackhouseK, HartS, et al.. Impact of Diabetes in Patients with Pulmonary Hypertension. Pulm Circ, 2015, 5(1): 117-123

[56]

JonesJR, BarrickC, KimKA, et al.. Deletion of PPARy in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci, 2005, 102(17): 6207-6212

[57]

KimJH, SongJ, ParkKW. The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer. Arch Pharmac Res, 2015, 38(3): 302-312

[58]

GeraciMW, MooreM, GesellT, et al.. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res, 2001, 88(6): 555-562

[59]

AmeshimaS, GolponH, CoolCD, et al.. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res, 2003, 92(10): 1162-1169

[60]

HansmannG, ZamanianRT. PPARy Activation: A Potential Treatment For Pulmonary Hypertension. Sci Translat Med, 2009, 1(12): 12ps4-ps4

[61]

NisbetRE, BlandJM, KleinhenzDJ, et al.. Rosiglitazone Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension in a Mouse Model. Am J Respir Cell Mol Biol, 2010, 42(4): 482-490

[62]

LegchenkoE, ChouvarineP, BorchertP, et al.. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Translat Med, 2018, 10(438): eaao0303

[63]

CalvierL, ChouvarineP, LegchenkoE, et al.. PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism. Cell Metab, 2017, 25(5): 1118-1134

[64]

HansmannG, de Jesus PerezVA, AlastaloT-P, et al.. An antiproliferative BMP-2/PPARy/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Investigat, 2008, 118(5): 1846-1857

[65]

BerteroT, LuY, AnnisS, et al.. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Investigat, 2014, 124(8): 3514-3528

[66]

LiF, ZhuY, WanY, et al.. Activation of PPARy inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. Eur J Pharmacol, 2017, 814: 324-334

[67]

YeligarSM, KangBY, BijliKM, et al.. PPARy Regulates Mitochondrial Structure and Function and Human Pulmonary Artery Smooth Muscle Cell Proliferation. Am J Respir Cell Mol Biol, 2018, 58(5): 648-657

[68]

TsengV, SutliffRL, HartCM. Redox Biology of Peroxisome Proliferator-Activated Receptor-gamma in Pulmonary Hypertension. Antioxid Redox Signal, 2019, 31(12): 874-897

[69]

HemnesAR, BrittainEL, TrammellAW, et al.. Evidence for Right Ventricular Lipotoxicity in Heritable Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2014, 189(3): 325-334

[70]

BrittainEL, TalatiM, FesselJP, et al.. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension. Circulation, 2016, 133(20): 1936-1944

[71]

JonasK, KopecG. HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. Int J Mol Sci, 2019, 20(14): 3514

[72]

HeresiGA, AytekinM, NewmanJ, et al.. Plasma Levels of High-Density Lipoprotein Cholesterol and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2010, 182(5): 661-668

[73]

ZhaoY, PengJ, LuC, et al.. Metabolomic heterogeneity of pulmonary arterial hypertension. PLoS One, 2014, 9(2): e88727

[74]

RandleP, GarlandP, HalesC, et al.. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1963, 281(7285): 785-789

[75]

DyckJRB, HopkinsTA, BonnetS, et al.. Absence of Malonyl Coenzyme A Decarboxylase in Mice Increases Cardiac Glucose Oxidation and Protects the Heart From Ischemic Injury. Circulation, 2006, 114(16): 1721-1728

[76]

SutendraG, BonnetS, RochefortG, et al.. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Translat Med, 2010, 2(44): 44ra58

[77]

ZhuangW, LianG, HuangB, et al.. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem, 2019, 455(1): 169-183

[78]

MünzbergH, MorrisonCD. Structure, production and signaling of leptin. Metabolism, 2015, 64(1): 13-23

[79]

SchäferK, HalleM, GoeschenC, et al.. Leptin Promotes Vascular Remodeling and Neointimal Growth in Mice. Arterioscler Thromb Vasc Biol, 2004, 24(1): 112-117

[80]

HuangF, XiongX, WangH, et al.. Leptin-induced vascular smooth muscle cell proliferation via regulating cell cycle, activating ERK1/2 and NF-kappaB. Acta Biochim Biophys Sin (Shanghai), 2010, 42(5): 325-331

[81]

KonstantinidesS, SchaferK, KoschnickS, et al.. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest, 2001, 108(10): 1533-1540

[82]

ChaiS, WangW, LiuJ, et al.. Leptin knockout attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting proliferation of pulmonary arterial smooth muscle cells. Translat Res, 2015, 166(6): 772-782

[83]

AytekinM, TonelliAR, FarverCF, et al.. Leptin deficiency recapitulates the histological features of pulmonary arterial hypertension in mice. Int J Clin Exp Pathol, 2014, 7(5): 1935-1946

[84]

SummerR, FiackCA, IkedaY, et al.. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol, 2009, 297(3): L432-L438

[85]

IvanovskaJ, KangC, Tamir-HostovskyL, et al.. Specific Role of Adiponectin in Pulmonary Artery Smooth Muscle Cells Proliferation and Inflammatory Cytokines Production during Rat Lung Development. FASEB J, 2019, 33(1_Suppl): 845.13-.13

[86]

LiR, WangWQ, ZhangH, et al.. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am J Physiol Endocrinol Metab, 2007, 293(6): E1703-E1708

[87]

NakagawaY, KishidaK, KiharaS, et al.. Adiponectin ameliorates hypoxia-induced pulmonary arterial remodeling. Biochem Biophys Res Communicat, 2009, 382(1): 183-188

[88]

ProiaRL, HlaT. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest, 2015, 125(4): 1379-1387

[89]

OgretmenB, HannunYA. Biologically active sphingo-lipids in cancer pathogenesis and treatment. Nat Rev Cancer, 2004, 4(8): 604-616

[90]

ChenJ, TangH, SysolJR, et al.. The Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2014, 190(9): 1032-1043

[91]

MacRitchieN, VolpertG, Al WashihM, et al.. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal, 2016, 28(8): 946-955

[92]

SiedlinskiM, NosalskiR, SzczepaniakP, et al.. Vascular transcriptome profiling identifies Sphingosine kinase 1 as a modulator of angiotensin II-induced vascular dysfunction. Sci Reports, 2017, 7: 44131

[93]

CantalupoA, ZhangY, KothiyaM, et al.. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med, 2015, 21: 1028

[94]

PyneNJ, PyneS. Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension?. Trends Mol Med, 2017, 23: 9

[95]

CathcartMC, TamosiunieneR, ChenG, et al.. Cyclooxygenase-2-linked attenuation of hypoxia-induced pulmonary hypertension and intravascular thrombosis. J Pharmacol Exp Ther, 2008, 326(1): 51-58

[96]

SetaF, RahmaniM, TurnerPV, et al.. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One, 2011, 6(8): e23439

[97]

FredenburghLE, LiangOD, MaciasAA, et al.. Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. Circulation, 2008, 117(16): 2114-2122

[98]

LiuF, WuJY, BeasleyD, et al.. TxA2-induced pulmonary artery contraction requires extracellular calcium. Respir Physiol, 1997, 109(2): 155-166

[99]

QianYM, JonesRL, ChanKM, et al.. Potent contractile actions of prostanoid EP3-receptor agonists on human isolated pulmonary artery. Br J Pharmacol, 1994, 113(2): 369-374

[100]

LuA, ZuoC, HeY, et al.. EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-beta1 signaling. J Clin Invest, 2015, 125(3): 1228-1242

[101]

DelannoyE, CourtoisA, Freund-MichelV, et al.. Hypoxia-induced hyperreactivity of pulmonary arteries: role of cyclooxygenase-2, isoprostanes, and thromboxane receptors. Cardiovasc Res, 2010, 85(3): 582-592

[102]

MitchellJA, Ahmetaj-ShalaB, KirkbyNS, et al.. Role of prostacyclin in pulmonary hypertension. Glob Cardiol Sci Pract, 2014, 2014(4): 382-393

[103]

ChristmanBW, McPhersonCD, NewmanJH, et al.. An Imbalance between the Excretion of Thromboxane and Prostacyclin Metabolites in Pulmonary Hypertension. N Engl J Med, 1992, 327(2): 70-75

[104]

TuderRM, CoolCD, GeraciMW, et al.. Prostacyclin Synthase Expression Is Decreased in Lungs from Patients with Severe Pulmonary Hypertension. Am J Respir Crit Care Med, 1999, 159(6): 1925-1932

[105]

SuYC, WangDX. Effects of cigarette smoking, hypoxia and vasoactive mediators on the production of PGI2 and TXA2 in cultured pulmonary artery endothelial cells. J Tongji Med Univ, 1991, 11(1): 6-9

[106]

GeraciMW, GaoB, ShepherdDC, et al.. Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J Clin Investigat, 1999, 103(11): 1509-1515

[107]

GubrijIB, MartinSR, PangleAK, et al.. Attenuation of monocrotaline-induced pulmonary hypertension by luminal adeno-associated virus serotype 9 gene transfer of prostacyclin synthase. Human Gene Ther, 2014, 25(6): 498-505

[108]

NagayaN, YokoyamaC, KyotaniS, et al.. Gene Transfer of Human Prostacyclin Synthase Ameliorates Monocrotaline-Induced Pulmonary Hypertension in Rats. Circulation, 2000, 102(16): 2005-2010

[109]

ZhouL, ChenZ, VandersliceP, et al.. Endothelial-Like Progenitor Cells Engineered to Produce Prostacyclin Rescue Monocrotaline-Induced Pulmonary Arterial Hypertension and Provide Right Ventricle Benefits. Circulation, 2013, 128(9): 982-994

[110]

SafdarZ. Treatment of pulmonary arterial hypertension: The role of prostacyclin and prostaglandin analogs. Respir Med, 2011, 105(6): 818-827

[111]

BadeschDB, McLaughlinVV, DelcroixM, et al.. Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol, 2004, 43(12Suppl): S56-S61

[112]

FalcettiE, HallSM, PhillipsPG, et al.. Smooth Muscle Proliferation and Role of the Prostacyclin (IP) Receptor in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2010, 182(9): 1161-1170

[113]

AkagiS, NakamuraK, MatsubaraH, et al.. Prostaglandin I2 induces apoptosis via upregulation of Fas ligand in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Int J Cardiol, 2013, 165(3): 499-505

[114]

EeMT, KantoresC, IvanovskaJ, et al.. Leukotriene B4 mediates macrophage influx and pulmonary hypertension in bleomycin-induced chronic neonatal lung injury. Am J Physiol Lung Cell Mol Physiol, 2016, 311(2): L292-302

[115]

TianW, JiangX, SungYK, et al.. Leukotrienes in pulmonary arterial hypertension. Immunol Res, 2014, 58(2–3): 387-393

[116]

WrightL, TuderRM, WangJ, et al.. 5-Lipoxygenase and 5-lipoxygenase activating protein (FLAP) immu-noreactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med, 1998, 157(1): 219-229

[117]

JonesJE, WalkerJL, SongY, et al.. Effect of 5-lipoxygenase on the development of pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol, 2004, 286(5): H1775-1784

[118]

TianW, JiangX, TamosiunieneR, et al.. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med, 2013, 5(200): 200ra117

[119]

VoelkelNF, TuderRM, WadeK, et al.. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest, 1996, 97(11): 2491-2498

[120]

QianJ, TianW, JiangX, et al.. Leukotriene B4 Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension. Hypertension, 2015, 66(6): 1227-1239

[121]

StamlerJS, LohE, RoddyMA, et al.. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation, 1994, 89(5): 2035-2040

[122]

FaganKA, McMurtryI, RodmanDM. Nitric oxide synthase in pulmonary hypertension: lessons from knockout mice. Physiol Res, 2000, 49(5): 539-548

[123]

Le CrasTD, McMurtryIF. Nitric oxide production in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol, 2001, 280(4): L575-582

[124]

BlockER, HerreraH, CouchM. Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 1995, 269(5): L574-L580

[125]

SuY, BlockER. Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol, 2000, 278(6): L1204-L1212

[126]

LiuJQ, ZelkoIN, ErbynnEM, et al.. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol, 2006, 290(1): L2-10

[127]

IgnarroLJ, BugaGM, WoodKS, et al.. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci, 1987, 84(24): 9265-9269

[128]

KlingerJR, KadowitzPJ. The Nitric Oxide Pathway in Pulmonary Vascular Disease. Am J Cardiol, 2017, 120(8Suppl): S71-S79

[129]

GhofraniHA, GalièN, GrimmingerF, et al.. Riociguat for the Treatment of Pulmonary Arterial Hypertension. N Engl J Med, 2013, 369(4): 330-340

[130]

GhofraniHA, D’ArminiAM, GrimmingerF, et al.. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med, 2013, 369(4): 319-329

[131]

GalièN, GhofraniHA, TorbickiA, et al.. Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension. N Engl J Med, 2005, 353(20): 2148-2157

[132]

GalieN, BrundageBH, GhofraniHA, et al.. Tadalafil therapy for pulmonary arterial hypertension. Circulation, 2009, 119(22): 2894-2903

[133]

ZhaoL, MasonNA, MorrellNW, et al.. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation, 2001, 104(4): 424-428

[134]

GalieN, BarberaJA, FrostAE, et al.. Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension. N Engl J Med, 2015, 373(9): 834-844

[135]

KlingerJR, AbmanSH, GladwinMT. Nitric Oxide Deficiency and Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med, 2013, 188(6): 639-646

[136]

ErezA, NagamaniSCS, ShchelochkovOA, et al.. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med, 2011, 17(12): 1619-1626

[137]

MorrisSJr.. Regulation of enzymes of the urea cycle and arginine metabolism. Ann Rev Nutrition, 2002, 22: 87-105

[138]

XuW, KanekoFT, ZhengS, et al.. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J, 2004, 18(14): 1746-1748

[139]

ChuY, XiangLiX, NiuH, et al.. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia. Mol Cell Biochem, 2016, 412(1–2): 91-99

[140]

JungC, GrunK, BetgeS, et al.. Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension. Int J Mol Sci, 2017, 18(8): 1609

[141]

CowburnAS, CrosbyA, MaciasD, et al.. HIF2α–arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci, 2016, 113(31): 8801-8806

[142]

Skoro-SajerN, MittermayerF, PanzenboeckA, et al.. Asymmetric Dimethylarginine Is Increased in Chronic Thromboembolic Pulmonary Hypertension. Am J Respir Crit Care Med, 2007, 176(11): 1154-1160

[143]

HensleyCT, WastiAT, DeBerardinisRJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest, 2013, 123(9): 3678-3684

[144]

DumasSJ, Bru-MercierG, CourboulinA, et al.. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation, 2018, 137(22): 2371-2389

[145]

BerteroT, PerkD, ChanSY. The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opin Ther Targets, 2019, 23(6): 511-524

[146]

EgnatchikRA, BrittainEL, ShahAT, et al.. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulm Circ, 2017, 7(1): 186-199

[147]

BerteroT, OldhamWM, CottrillKA, et al.. Vascular stiffness mechanoactivates YAP/TAZ-dependent gluta-minolysis to drive pulmonary hypertension. J Clin Invest, 2016, 126(9): 3313-3335

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/