Polysubstituted Phenyl Glucosides Produced by the Fungus Metarrhizium anisopliae

Wen-jing Wang , Chong Dai , Jian-ping Wang , Hu-cheng Zhu , Chun-mei Chen , Yong-hui Zhang

Current Medical Science ›› 2020, Vol. 40 ›› Issue (2) : 232 -238.

PDF
Current Medical Science ›› 2020, Vol. 40 ›› Issue (2) : 232 -238. DOI: 10.1007/s11596-020-2168-2
Article

Polysubstituted Phenyl Glucosides Produced by the Fungus Metarrhizium anisopliae

Author information +
History +
PDF

Abstract

Metarhizosides A–G (17), seven new polysubstituted phenyl glucosides, were isolated from the extracts of solid rice medium of a marine-derived fungus Metarrhizium anisopliae. Compounds 17 all contain a polysubstituted phenyl group and the sugar unit is identified as 4′-O-methyl-β-D-glucopyranose. Their structures were elucidated by NMR spectroscopy and chemical method. These compounds were evaluated for anti-inflammatory activity by using LPS-stimulated murine macrophage RAW 264.7 cells and the cytotoxicities against four human cancer cell lines.

Keywords

marine-derived fungus / glucosides / Metarrhizium anisopliae / anti-inflammation / cytotoxicities

Cite this article

Download citation ▾
Wen-jing Wang, Chong Dai, Jian-ping Wang, Hu-cheng Zhu, Chun-mei Chen, Yong-hui Zhang. Polysubstituted Phenyl Glucosides Produced by the Fungus Metarrhizium anisopliae. Current Medical Science, 2020, 40(2): 232-238 DOI:10.1007/s11596-020-2168-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JinLL, QuanCS, HouXY, et al.. Potential pharmacological resources: natural bioactive compounds from marine-derived fungi. Mar Drugs, 2016, 14(4): 76-100

[2]

HongJH, JangS, HeoYM, et al.. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs, 2015, 13(7): 4137-4155

[3]

ZhuG, KongF, WangY, et al.. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived Cladosporium sp. Oucmdz-1635. Mar Drugs, 2018, 16(2): 71-78

[4]

PyeCR, BertinMJ, LokeyRS, et al.. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA, 2017, 114(22): 5601-5606

[5]

CarrollAR, CoppBR, DavisRA, et al.. Marine natural products. Nat Prod Rep, 2019, 36(1): 122-173

[6]

BluntJW, CarrollAR, CoppBR, et al.. Marine natural products. Nat Prod Rep, 2018, 35(1): 8-53

[7]

BluntJW, CoppBR, KeyzersRA, et al.. Marine natural products. Nat Prod Rep, 2017, 34(3): 235-294

[8]

BluntJW, CoppBR, KeyzersRA, et al.. Marine natural products. Nat Prod Rep, 2015, 32(2): 116-211

[9]

RatebME, EbelR. Secondary metabolites of fungi from marine habitats. Nat Prod Rep, 2011, 28(2): 290-344

[10]

SaleemM, AliMS, HussainS, et al.. Marine natural products of fungal origin. Nat Prod Rep, 2007, 24(5): 1142-1152

[11]

BluntJW, CoppBR, MunroMHG, et al.. Marine natural products. Nat Prod Rep, 2004, 21(1): 1-49

[12]

JegorovA, SedmeraP, MathaV. Biosynthesis of destruxins. Phytochemistry, 1993, 33(6): 1403-1405

[13]

ChenHC, YehSF, OngGT, et al.. The novel desmethyldestruxin B2, from Metarrhizium anisopliae. that suppresses hepatitis B virus surface antigen production in human hepatoma cells, 1995, 58(42): 527

[14]

JegorovA, SedmeraP, HavlíčekV, et al.. Destruxin Ed1 a cyclopeptide from the fungus Metarrhizium anisopliae. Phytochemistry, 1998, 49(6): 1815-1817

[15]

FujiiY, TaniH, IchinoeM, et al.. Zygosporin D and two new cytochalasins produced by the fungus Metarrhizium anisopliae. J Nat Prod, 2000, 63(1): 132-135

[16]

VázquezMJ, AlbarránMI, EspadaA, et al.. A new destruxin as inhibitor of vacuolar-type H+-ATPase of Saccharomyces cerevisiae. Chem Biodivers, 2005, 2(1): 123-130

[17]

AzumiM, IshidohKI, KinoshitaH, et al.. Aurovertins F-H from the entomopathogenic fungus Metarrhizium anisopliae. J Nat Prod, 2008, 71(2): 278-280

[18]

WuX, LinS, ZhuC, et al.. Homo- and heptanor-sterols and tremulane sesquiterpenes from cultures of Phellinus igniarius. J Nat Prod, 2010, 73(7): 1294-1300

[19]

ChenXL, WuM, TiHH, et al.. Three new 3,6-dioxygenated diketopiperazines from the basidiomycete Lepista sordida. HeIv Chim Acta, 2011, 94(8): 1426-1430

[20]

HeF, SunYL, LiuKS, et al.. Indole alkaloids from marine-derived fungus Aspergillus sydowii scsio 00305. J Antibiot, 2012, 65(2): 109-111

[21]

ZhangM, WangWL, FangYC, et al.. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J Nat Prod, 2008, 71(6): 985-989

[22]

WangWJ, XiaoW, LiuJJ, et al.. Two new terpenoids from Talaromyces purpurogenus. Mar Drugs, 2018, 16(5): 150-159

[23]

WenHL, LiuXR, ZhangQ, et al.. Three new indole diketopiperazine alkaloids from Aspergillus ochraceus. Chem Biodivers, 2018, 15(4): e1700550-e1700558

[24]

WangWJ, GongJJ, LiuXR, et al.. Cytochalasans produced by the coculture of Aspergillus flavipes and chaetomium globosum. J Nat Prod, 2018, 81(7): 1578-1587

[25]

DuusJ, GotfredsenCH, BockK. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chem Rev, 2000, 100(12): 4589-4614

[26]

IsakaM, HaritakunR, SupothinaS, et al.. N-hydroxypyridone alkaloids, chromone derivatives, and tetrahydroxanthones from the scale-insect pathogenic fungus Orbiocrella sp. Bcc 33248. Tetrahedron, 2014, 70%48: 9198-9203

[27]

BunyapaiboonsriT, YoiprommaratS, KhonsanitA, et al.. Phenolic glycosides from the filamentous fungus Acremonium sp. Bcc 14080. J Nat Prod, 2008, 71(5): 891-894

[28]

SmithF. The constitution of mesquite gum. Part III. The structure of the monomethyl glucuronic acid component. J Chem Soc, 19512646-2652

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/