Preventive and Therapeutic Potential of Vitamin C in Mental Disorders

Qian-qian Han , Tian-tian Shen , Fang Wang , Peng-fei Wu , Jian-guo Chen

Current Medical Science ›› 2018, Vol. 38 ›› Issue (1) : 1 -10.

PDF
Current Medical Science ›› 2018, Vol. 38 ›› Issue (1) : 1 -10. DOI: 10.1007/s11596-018-1840-2
Article

Preventive and Therapeutic Potential of Vitamin C in Mental Disorders

Author information +
History +
PDF

Abstract

In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.

Keywords

vitamin C / ascorbic acid / oxidative stress / Alzheimer's disease / major depressive disorder

Cite this article

Download citation ▾
Qian-qian Han, Tian-tian Shen, Fang Wang, Peng-fei Wu, Jian-guo Chen. Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Current Medical Science, 2018, 38(1): 1-10 DOI:10.1007/s11596-018-1840-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RebecGV, PierceRC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol, 1994, 43(6): 537-565 PMID: 7816935

[2]

TraberMG, StevensJF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med, 2011, 51(5): 1000-1013 PMID: 21664268 PMCID: 3156342

[3]

RumseySC, DaruwalaR, Al-HasaniH, et al. . Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem, 2000, 275(36): 28 246-28 253

[4]

RumseySC, KwonO, XuGW, et al. . Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem, 1997, 272(30): 18 982-18 989

[5]

SaviniI, RossiA, PierroC, et al. . SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids, 2008, 34(3): 347-355 PMID: 17541511

[6]

TakanagaH, MackenzieB, HedigerMA. Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch, 2004, 447(5): 677-682 PMID: 12845532

[7]

HarrisonFE, MayJM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med, 2009, 46(6): 719-730 PMID: 19162177 PMCID: 2649700

[8]

SchenkJO, MillerE, GaddisR, et al. . Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res, 1982, 253(1-2): 353-356 PMID: 6295558

[9]

ZhangM, LiuK, XiangL, et al. . Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem, 2007, 79(17): 6559-6565 PMID: 17676820

[10]

MirazizovKD. Vitamin C content in the cerebrospinal fluid, blood and urine of patients with otogenic intracranial complications. Med Zh Uzb, 1962, 5: 40-44 PMID: 14474427

[11]

KratzingCC, KellyJD, KratzingJE. Ascorbic acid in fetal rat brain. J Neurochem, 1985, 44(5): 1623-1624 PMID: 3989554

[12]

HeXB, KimM, KimSY, et al. . Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1-and JMJD3-dependent epigenetic control manner. Stem Cells, 2015, 33(4): 1320-1332 PMID: 25535150 PMCID: 4435601

[13]

QiuS, LiL, WeeberEJ, et al. . Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res, 2007, 85(5): 1046-1056 PMID: 17304569

[14]

EldridgeCF, BungeMB, BungeRP, et al. . Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol, 1987, 105(2): 1023-1034 PMID: 3624305

[15]

MajewskaMD, BellJA. Ascorbic acid protects neurons from injury induced by glutamate and NMD A. Neuroreport, 1990, 1(3-4): 194-196 PMID: 1983355

[16]

LevineM, MoritaK, HeldmanE, et al. . Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. J Biol Chem, 1985, 260(29): 15 598-15 603

[17]

Nutrients, 2017, 9(9

[18]

KuoCH, HataF, YoshidaH, et al. . Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci, 1979, 2410): 911-915 PMID: 109717

[19]

JaberM, RobinsonSW, MissaleC, et al. . Dopamine receptors and brain function. Neuropharmacology, 1996, 35(11): 1503-1519 PMID: 9025098

[20]

BeaulieuJM, GainetdinovRR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev, 2011, 63(1): 182-217 PMID: 21303898

[21]

DilibertoE J, AllenPL. Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase. Mol Pharmacol, 1980, 17(3): 421-426 PMID: 7393218

[22]

LevineM, AsherA, PollardH, et al. . Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem, 1983, 258(21): 13 111-13 115

[23]

DesoleMS, MieleM, EnricoP, et al. . Investigations into the relationship between the dopaminergic system and ascorbic acid in rat striatum. Neurosci Lett, 1991, 127(1): 34-38 PMID: 1881615

[24]

BermanSB, ZigmondMJ, HastingsTG. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem, 1996, 67(2): 593-600 PMID: 8764584

[25]

HastingsTG, LewisDA, ZigmondMJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA, 1996, 93(5): 1956-1961 PMID: 8700866 PMCID: 39890

[26]

SandstromMI, RebecGV. Extracellular ascorbate modulates glutamate dynamics: role of behavioral activation. BMC Neurosci, 2007, 8: 32 PMID: 17506898 PMCID: 1884166

[27]

MendelsohnAB, BelleSH, StoehrGP, et al. . Use of antioxidant supplements and its association with cognitive function in a rural elderly cohort: the MoVIES Project. Monongahela Valley Independent Elders Survey. Am J Epidemiol, 1998, 148(1): 38-44 PMID: 9663402

[28]

BertiV, MurrayJ, DaviesM, et al. . Nutrient patterns and brain biomarkers of Alzheimer's disease in cognitively normal individuals. J Nutr Health Aging, 2015, 19(4): 413-423 PMID: 25809805 PMCID: 4375781

[29]

FreiB, EnglandL, AmesBN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sei USA, 1989, 86(16): 6377-6381

[30]

BuettnerGR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys, 1993, 300(2): 535-543 PMID: 8434935

[31]

LynchSM, MorrowJD, RobertsLJ, et al. . Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest, 1994, 93(3): 998-1004 PMID: 8132786 PMCID: 294019

[32]

FranzkeC, HederG, WenzelH. Effect of pro-and antioxidants on secondary products of fat autoxidation. Nahrung, 1973, 17(4): 429-441 PMID: 4723597

[33]

CsallanyAS, DraperHH, ShahSN. Conversion of d-alpha-tocopherol-C14 to tocopheryl-p-quinone in vivo. Arch Biochem Biophys, 1962, 98: 142-145 PMID: 13882501

[34]

SilS, GhoshT, GuptaP, et al. . Dual Role of Vitamin C on the Neuroinflammation Mediated Neurodegeneration and Memory Impairments in Colchicine Induced Rat Model of Alzheimer Disease. J Mol Neurosci, 2016, 60(4): 421-435 PMID: 27665568

[35]

AhmadA, ShahSA, BadshahH, et al. . Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain. CNS Neurol Disord Drug Targets, 2016, 15(3): 360-370 PMID: 26831257

[36]

HuangYN, LaiCC, ChiuCT, et al. . L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-kappaB translocation in cortical neurons/glia Cocultures. PLoS One, 2014, 9(7): e97276 PMID: 24983461 PMCID: 4077707

[37]

Nutrients, 2017, 9(7

[38]

TahilianiM, KohKP, ShenY, et al. . Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 3245929): 930-935 PMID: 19372391 PMCID: 2715015

[39]

YinR, MaoSQ, ZhaoB, et al. . Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc, 2013, 135(28): 10 396-10 403

[40]

ChenJ, LiuH, LiuJ, et al. . H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet, 2013, 45(1): 34-42 PMID: 23202127

[41]

WangT, ChenK, ZengX, et al. . The histone demethylases Jhdmla/lb enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 2011, 9(6): 575-587 PMID: 22100412

[42]

CamarenaV, WangG. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sei, 2016, 73(8): 1645-1658

[43]

KazakovtsevBA, KrasnovVN, LevinaNB, et al. . WHO European Ministerial Conference on Mental Health, “facing the challenges, building solutions” (Helsinki, Finland, 12–15 January 2005). Zh Nevrol Psikhiatr Im S S Korsakova, 2005, 105(9): 78-80 PMID: 16250587

[44]

MajewskaMD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol, 1992, 38(4): 379-395 PMID: 1349441

[45]

BrambillaP, PerezJ, BaraleF, et al. . GABAergic dysfunction in mood disorders. Mol Psychiatry, 2003, 8(8): 721-737 PMID: 12888801

[46]

MitchellND, BakerGB. An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand, 2010, 122(3): 192-210 PMID: 20105149

[47]

ChoiYK, TaraziFI. Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/-mice: relevance to schizophrenia. BMB Rep, 2010, 43(9): 593-598 PMID: 20846490

[48]

LiMX, ZhengHL, LuoY, et al. . Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry, 2017

[49]

DebnathM, BerkM. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia. Mol Neurobiol, 2017, 54(10): 8170-8178 PMID: 27900676

[50]

SchiavoneS, TrabaceL. Inflammation, Stress Response, and Redox Dysregulation Biomarkers: Clinical Outcomes and Pharmacological Implications for Psychosis. Front Psychiatry, 2017, 8: 203 PMID: 29118723 PMCID: 5660996

[51]

OvendenES, McGregorNW, EmsleyRA, et al. . DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 38-49 PMID: 29017764

[52]

UchidaS, YamagataH, SekiT, et al. . Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci, 2017

[53]

ChatteqeeP, RoyD, RathiN. Epigenetic Drug Repositioning for Alzheimer's Disease Based on Epigenetic Targets in Human Interactome. J Alzheimers Dis, 2018, 61(1): 53-65

[54]

CzarnyP, WignerP, GaleckiP, et al. . The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry, 2018309-321

[55]

GeiserE, RetsaC, KnebelJF, et al. . The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophr Res, 2017, 190: 52-59 PMID: 28189532

[56]

FamitafreshiH, KarimianM. Socialization alleviates burden of oxidative-stress in hippocampus and prefrontal cortex in morphine addiction period in male rats. Curr Mol Pharmacol, 2017

[57]

DixitS, BernardoA, WalkerJM, et al. . Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. A ACS Chem Neurosci, 2015, 6(4): 570-581 PMID: 25642732

[58]

WardMS, LambJ, MayJM, et al. . Behavioral and monoamine changes following severe vitamin C deficiency. J Neurochem, 2013, 124(3): 363-375 PMID: 23106783

[59]

ChenY, CurranCP, NebertDW, et al. . Effect of vitamin C deficiency during postnatal development on adult behavior: functional phenotype of Gulo-/-knockout mice. Genes Brain Behav, 2012, 11(3): 269-277 PMID: 22296218

[60]

PierceMR, DiasioDL, RodriguesLM, et al. . Combined vitamin C and E deficiency induces motor defects in gulo(-/-)/SVCT2(+/-) mice. Nutr Neurosci, 2013, 16(4): 160-173 PMID: 23321552

[61]

LiFJ, ShenL, JiHF. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer's disease: a meta-analysis. J Alzheimers Dis, 2012, 31(2): 253-258 PMID: 22543848

[62]

MorettiM, CollaA d O, BalenG, et al. . Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res, 2012, 46(3): 331-340 PMID: 22154133

[63]

MorettiM, BudniJ, FreitasAE, et al. . TNF-alpha-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol, 2015, 25(6): 902-912 PMID: 25836357

[64]

MorettiM, BudniJ D, SantosDB, et al. . Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci, 2013, 49(1): 68-79 PMID: 23054587

[65]

ShivavediN, KumarM, TejG, et al. . Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res, 2017, 1674: 1-9 PMID: 28827076

[66]

BinfareRW, RosaAO, LobatoKR, et al. . Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33(3): 530-540 PMID: 19439241

[67]

MorettiM, BudniJ, FreitasAE, et al. . Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res, 2014, 48(1): 16-24 PMID: 24209999

[68]

MorettiM, FreitasAE, BudniJ, et al. . Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav Brain Res, 2011, 225(1): 328-333 PMID: 21802450

[69]

RosaPB, NeisVB, RibeiroCM, et al. . Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol Rep, 2016, 68(5): 996-1001 PMID: 27423525

[70]

MorettiM, BudniJ, RibeiroCM, et al. . Subchronic administration of ascorbic acid elicits antidepressant-like effect and modulates cell survival signaling pathways in mice. J Nutr Biochem, 2016, 38: 50-56 PMID: 27721116

[71]

CarrAC, BozonetSM, PullarJM, et al. . Mood improvement in young adult males following supplementation with gold kiwifruit, a high-vitamin C food. J Nutr Sei, 2013, 2: e24

[72]

ZhangM, RobitailleL, EintrachtS, et al. . Vitamin C provision improves mood in acutely hospitalized patients. Nutrition, 2011, 27(5): 530-533 PMID: 20688474

[73]

AmrM, El-MogyA, ShamsT, et al. . Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J, 2013, 12: 31 PMID: 23510529 PMCID: 3599706

[74]

BrodyS. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry, 2002, 52(4): 371-374 PMID: 12208645

[75]

JavittDC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sei, 2010, 47(1): 4-16

[76]

MarsmanA v d, HeuvelMP, KlompDW, et al. . Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull, 2013, 39(1): 120-129 PMID: 21746807

[77]

BowieCR, HarveyPD. Schizophrenia from a neuropsychiatric perspective. Mt Sinai J Med, 2006, 73(7): 993-998 PMID: 17195885

[78]

YaoJK, ReddyRD, van KämmenDP. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs, 2001, 15(4): 287-310 PMID: 11463134

[79]

DoKQ, CabungcalJH, FrankA, et al. . Redox dysregulation, neurodevelopment, and schizophrenia. Curr OpinNeurobiol, 2009, 19(2): 220-230

[80]

WangJF, ShaoL, SunX, et al. . Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord, 2009, 11(5): 523-529 PMID: 19624391

[81]

DamazioLS, SilveiraFR, CaneverL, et al. . The preventive effects of ascorbic acid supplementation on locomotor and acetylcholinesterase activity in an animal model of schizophrenia induced by ketamine. An Acad Bras Cienc, 2017, 89(2): 1133-1141 PMID: 28513779

[82]

HofferLJ. Vitamin therapy in schizophrenia. Isr J Psychiatry Relat Sei, 2008, 45(1): 3-10

[83]

CastagneV, RougemontM, CuenodM, et al. . Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol Dis, 2004, 15(1): 93-105 PMID: 14751774

[84]

DakhaleGN, KhanzodeSD, KhanzodeSS, et al. . Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology, 2005, 182(4): 494-498 PMID: 16133138

[85]

KesslerRC, RuscioAM, ShearK, et al. . Epidemiology of anxiety disorders. Curr Top Behav Neurosci, 2010, 2: 21-35 PMID: 21309104

[86]

KesslerRC, PetukhovaM, SampsonNA, et al. . Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res, 2012, 21(3): 169-184 PMID: 22865617 PMCID: 4005415

[87]

CraskeMG, SteinMB, EleyTC, et al. . Anxiety disorders. Nat Rev Dis Primers, 2017, 3: 17 024

[88]

RammalH, BouayedJ, YounosC, et al. . Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav Immun, 2008, 22(8): 1156-1159 PMID: 18620042

[89]

HovattaI, JuhilaJ, DonnerJ. Oxidative stress in anxiety and comorbid disorders. Neurosci Res, 2010, 68(4): 261-275 PMID: 20804792

[90]

de OliveiraIJ, de SouzaW, MottaV, et al. . Effects of Oral Vitamin C Supplementation on Anxiety in Students: A Double-Blind, Randomized, Placebo-Controlled Trial. Pak J Biol Sci, 2015, 18(1): 11-18 PMID: 26353411

[91]

PutyB, MaximinoC, BrasilA, et al. . Ascorbic acid protects against anxiogenic-like effect induced by methylmercury in zebrafish: action on the serotonergic system. Zebrafish, 2014, 11(4): 365-370 PMID: 24979594

[92]

HughesRN, LowtherC v, NobelenM. Prolonged treatment with vitamins C and E separately and together decreases anxiety-related open-field behavior and acoustic startle in hooded rats. Pharmacol Biochem Behav, 2011, 97(3): 494-499 PMID: 21036190

[93]

NaharZ, SarwarM S, IslamM, et al. . Determination of serum antioxidant vitamins, glutathione and MDA levels in panic disorder patients. Drug Res, 2013, 63(8): 424-428

[94]

BartusRT, DeanR 3, BeerB, et al. . The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4558): 408-414 PMID: 7046051

[95]

ScarpiniE, CogiamanianF. Alzheimer's disease: from molecular pathogenesis to innovative therapies. Expert Rev Neurother, 2003, 3(5): 619-630 PMID: 19810962

[96]

SmithMA, PerryG, PryorWA. Causes and consequences of oxidative stress in Alzheimer's disease. Free Radic Biol Med, 2002, 32(11): 1049 PMID: 12031888

[97]

CoyleJT, PriceDL, DeLongMR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science, 1983, 219(4589): 1184-1190 PMID: 6338589

[98]

McKhannG, DrachmanD, FolsteinM, et al. . Clinical diagnosis of Alzheimer's disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984, 34(7): 939-944 PMID: 6610841

[99]

ZhangL, LiuF, SunX, et al. . Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer's Disease. Anal Chem, 2017, 89(3): 1831-1837 PMID: 28208253

[100]

WarnerTA, KangJQ, KennardJA, et al. . Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease. Epilepsy Res, 2015, 110: 20-25 PMID: 25616451

[101]

IdeK, YamadaH, KawasakiY, et al. . Peripheral Vitamin C Levels in Alzheimer's Disease: A Cross-Sectional Study. J Nutr Sci Vitaminol, 2016, 62(6): 432-436 PMID: 28202849

[102]

KennardJA, HarrisonFE. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice. Behav Brain Res, 2014, 264: 34-42 PMID: 24508240 PMCID: 3980584

[103]

KookSY, LeeKM, KimY, et al. . High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis, 2014, 5: el083

[104]

ArltS, Muller-ThomsenT, BeisiegelU, et al. . Effect of one-year vitamin C-and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease. Neurochem Res, 2012, 37(12): 2706-2714 PMID: 22878647

[105]

BasambomboLL, CarmichaelPH, CoteS, et al. . Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother, 2017, 51(2): 118-124 PMID: 27708183

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/