PDF
Abstract
The antisense transcript long non-coding RNA (lncRNA) (antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2B (CDKN2B) gene on chromosome 9p21 that contains an overlapping 299-bp region and shares a bidirectional promoter with alternate open reading frame (ARF). In the context of gene regulation, ANRIL is responsible for directly recruiting polycomb group (PcG) proteins, including polycomb repressive complex-1 (PRC-1) and polycomb repressive complex-2 (PRC-2), to modify the epigenetic chromatin state and subsequently inhibit gene expression in cis-regulation. On the other hand, previous reports have indicated that ANRIL is capable of binding to a specific site or sequence, including the Alu element, E2F transcription factor 1 (E2F1), and CCCTC-binding factor (CTCF), to achieve trans-regulation functions. In addition to its function in cell proliferation, adhesion and apoptosis, ANRIL is very closely associated with atherosclerosis- related diseases. The different transcripts and the SNPs that are related to atherosclerotic vascular diseases (ASVD-SNPs) are inextricably linked to the development and progression of atherosclerosis. Linear transcripts have been shown to be a risk factor for atherosclerosis, whereas circular transcripts are protective against atherosclerosis. Furthermore, ANRIL also acts as a component of the inflammatory pathway involved in the regulation of inflammation, which is considered to be one of the causes of atherosclerosis. Collectively, ANRIL plays an important role in the formation of atherosclerosis, and the artificial modification of ANRIL transcripts should be considered following the development of this disease.
Keywords
ANRIL
/
atherosclerosis
/
gene regulation
/
duality
Cite this article
Download citation ▾
Jie-shan Chi, Jian-zhou Li, Jing-jing Jia, Ting Zhang, Xiao-ma Liu, Li Yi.
Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis.
Current Medical Science, 2017, 37(6): 816-822 DOI:10.1007/s11596-017-1812-y
| [1] |
PasmantE, LaurendeauI, HeronD, et al. . Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res, 2007, 67(8): 3963-3969 PMID: 17440112
|
| [2] |
AguiloF, ZhouMM, WalshMJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res, 2011, 71(16): 5365-5369 PMID: 21828241 PMCID: 3339196
|
| [3] |
DixonRJ, EperonIC, HallL, et al. . A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. Nucleic Acids Res, 2005, 33(18): 5904-5913 PMID: 16237125 PMCID: 1258171
|
| [4] |
SchunkertH, GotzA, BraundP, et al. . Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008, 117(13): 1675-1684 PMID: 18362232 PMCID: 2689930
|
| [5] |
GuttmanM, AmitI, GarberM, et al. . Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature., 2009, 458(7235): 223-227 PMID: 19182780 PMCID: 2754849
|
| [6] |
HoldtLM, TeupserD. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arteriosclerosis, thrombosis, and vascular biology., 2012, 32(2): 196-206 PMID: 22258902
|
| [7] |
BirosE, CooperM, PalmerLJ, et al. . Association of an allele on chromosome 9 and abdominal aortic aneurysm. Atherosclerosis., 2010, 212(2): 539-542 PMID: 20605023 PMCID: 2952706
|
| [8] |
BownMJ, BraundPS, ThompsonJ, et al. . Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm. Circ Cardiovasc Genet, 2008, 1(1): 39-42 PMID: 20031540
|
| [9] |
HelgadottirA, ThorleifssonG, MagnussonKP, et al. . The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet., 2008, 40(2): 217-224 PMID: 18176561
|
| [10] |
HelgadottirA, ThorleifssonG, ManolescuA, et al. . A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 2007, 316(5830): 1491-1493 PMID: 17478679
|
| [11] |
YeS, WilleitJ, KronenbergF, et al. . Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. J Am Coll Cardiol, 2008, 52(5): 378-384 PMID: 18652946
|
| [12] |
CluettC, McDermottMM, GuralnikJ, et al. . The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet, 2009, 2(4): 347-353 PMID: 20031606 PMCID: 2777723
|
| [13] |
GschwendtnerA, BevanS, ColeJW, et al. . Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol, 2009, 65(5): 531-539 PMID: 19475673 PMCID: 2702695
|
| [14] |
MatarinM, BrownWM, SingletonA, et al. . Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke, 2008, 39(5): 1586-1589 PMID: 18340101 PMCID: 3932672
|
| [15] |
VaccarinoV, BremnerJD, KelleyME. JUPITER: a few words of caution. Circ Cardiovasc Qual Outcomes, 2009, 2(3): 286-288. PMID: 20031850 PMCID: 2798141
|
| [16] |
KotakeY, NakagawaT, KitagawaK, et al. . Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene, 2011, 30(16): 1956-1962 PMID: 21151178
|
| [17] |
TanoK, AkimitsuN. Long non-coding RNAs in cancer progression. Front Genet, 2012, 3: 219 PMID: 23109937 PMCID: 3479403
|
| [18] |
IacobucciI, SazziniM, GaragnaniP, et al. . A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res, 2011, 35(8): 1052-1059 PMID: 21414664
|
| [19] |
ChenC, BartenhagenC, GombertM, et al. . Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia. Genes Chromosomes Cancer, 2013, 52(6): 564-579 PMID: 23508829
|
| [20] |
TurnbullC, AhmedS, MorrisonJ, et al. . Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet, 2010, 42(6): 504-507 PMID: 20453838 PMCID: 3632836
|
| [21] |
BeiJX, LiY, JiaWH, et al. . A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010, 42(7): 599-603 PMID: 20512145
|
| [22] |
ZouZW, MaC, MedoroL, et al. . LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget, 2016, 7(38): 61741-61754 PMID: 27557514 PMCID: 5308687
|
| [23] |
CunningtonMS, Santibanez KorefM, MayosiBM, et al. . Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet, 2010, 6(4): e1000899 PMID: 20386740 PMCID: 2851566
|
| [24] |
BishopDT, DemenaisF, IlesMM, et al. . Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet, 2009, 41(8): 920-925 PMID: 19578364 PMCID: 2741419
|
| [25] |
BoonRA, JaeN, HoldtL, et al. . Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets. J Am Coll Cardiol, 2016, 67(10): 1214-1226 PMID: 26965544
|
| [26] |
ChenH, XinY, ZhouL, et al. . Cisplatin and paclitaxel target significant long noncoding RNAs in laryngeal squamous cell carcinoma. Med Oncol, 2014, 31(11): 246 PMID: 25257554
|
| [27] |
ChidlowG, WoodJP, SharmaS, et al. . Ocular expression and distribution of products of the POAG-associated chromosome 9p21 gene region. PLoS One, 2013, 8(9): e75067 PMID: 24069379 PMCID: 3777912
|
| [28] |
NieFQ, SunM, YangJS, et al. . Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther, 2015, 14(1): 268-277 PMID: 25504755
|
| [29] |
WibomC, SpathF, DahlinAM, et al. . Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case-control study. Cancer Epidemiol Biomarkers Prev, 2015, 24(5): 810-816 PMID: 25713050
|
| [30] |
LuY, ZhouX, XuL, et al. . Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther, 2016, 9: 3077-3084 PMID: 27307748 PMCID: 4888724
|
| [31] |
NaemuraM, TsunodaT, InoueY, et al. . ANRIL regulates the proliferation of human colorectal cancer cells in both two-and three-dimensional culture. Mol Cell Biochem, 2016, 412(1-2): 141-146 PMID: 26708220
|
| [32] |
PengL, YuanX, JiangB, et al. . LncRNAs: key players and novel insights into cervical cancer. Tumour Biol, 2016, 37(3): 2779-2788 PMID: 26715267
|
| [33] |
PasmantE, SabbaghA, Masliah-PlanchonJ, et al. . Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst, 2011, 103(22): 1713-1722 PMID: 22034633
|
| [34] |
ZhuH, LiX, SongY, et al. . Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem Biophys Res Commun, 2015, 467(2): 223-228 PMID: 26449463
|
| [35] |
YuanW, WuT, FuH, et al. . Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science, 2012, 337(6097): 971-975 PMID: 22923582
|
| [36] |
BernardD, Martinez-LealJF, RizzoS, et al. . CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene, 2005, 24(36): 5543-5551 PMID: 15897876
|
| [37] |
YapKL, LiS, Munoz-CabelloAM, et al. . Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010, 38(5): 662-674 PMID: 20541999 PMCID: 2886305
|
| [38] |
SchmidCW, DeiningerPL. Sequence organization of the human genome. Cell, 1975, 6(3): 345-358 PMID: 1052772
|
| [39] |
KriegsJO, ChurakovG, JurkaJ, et al. . Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet, 2007, 23(4): 158-161 PMID: 17307271
|
| [40] |
HoldtLM, HoffmannS, SassK, et al. . Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet, 2013, 9(7): e1003588 PMID: 23861667 PMCID: 3701717
|
| [41] |
JarinovaO, StewartAF, RobertsR, et al. . Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009, 29(10): 1671-1677 PMID: 19592466
|
| [42] |
Yoshida.. ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep, 2010, 24(3): 701-707 PMID: 20664976
|
| [43] |
RobertsonKD, JonesPA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol, 1998, 18(11): 6457-6473 PMID: 9774662 PMCID: 109232
|
| [44] |
SherrCJ, McCormickF. The RB and p53 pathways in cancer. Can Cell, 2002, 2(2): 103-112
|
| [45] |
WanG, MathurR, HuX, et al. . Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal, 2013, 25(5): 1086-1095 PMID: 23416462 PMCID: 3675781
|
| [46] |
RodriguezC, BorgelJ, CourtF, et al. . CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun, 2010, 392(2): 129-134 PMID: 20051228
|
| [47] |
LagrueG, NiaudetP, GuillotF, et al. . Pregnancy and glomerulonephritis. Lancet, 1989, 2(8670): 1037 PMID: 2572762
|
| [48] |
HuangMD, ChenWM, QiFZ, et al. . Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol, 2015, 8(1): 57 PMID: 27391317 PMCID: 5015197
|
| [49] |
CongrainsA, KamideK, KatsuyaT, et al. . CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012, 419(4): 612-616 PMID: 22382030
|
| [50] |
SchaeferAS, BochenekG, JochensA, et al. . Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. Circ Cardiovasc Genet, 2015, 8(1): 159-167 PMID: 25466412
|
| [51] |
BurdonKP, MacgregorS, HewittAW, et al. . Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet, 2011, 43(6): 574-578 PMID: 21532571
|
| [52] |
BurdonKP, CrawfordA, CassonRJ, et al. . Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology, 2012, 119(8): 1539-1545 PMID: 22521085
|
| [53] |
SchaeferAS, BochenekG, MankeT, et al. . Validation of reported genetic risk factors for periodontitis in a large-scale replication study. J Clini Periodontol, 2013, 40(6): 563-572
|
| [54] |
MasharawiYM, KjaerP, BendixT, et al. . Lumbar facet and interfacet shape variation during growth in children from the general population: a three-year follow-up MRI study. Spine, 2009, 34(4): 408-412 PMID: 19214102
|
| [55] |
ForoudT, KollerDL, LaiD, et al. . Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke, 2012, 43(11): 2846-2852 PMID: 22961961 PMCID: 3752852
|
| [56] |
KremerPH, KoelemanBP, PawlikowskaL, et al. . Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry, 2015, 86(5): 524-529 PMID: 25053769
|
| [57] |
BaiY, NieS, JiangG, et al. . Regulation of CARD8 Expression by ANRIL and Association of CARD8 Single Nucleotide Polymorphism rs2043211 (p.C10X) With Ischemic Stroke. Stroke, 2014, 45(2): 383-388 PMID: 24385277 PMCID: 3962686
|
| [58] |
CongrainsA, KamideK, OguroR, et al. . Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 2012, 220(2): 449-455 PMID: 22178423
|
| [59] |
LanWG, XuDH, XuC, et al. . Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep, 2016, 36(1): 263-270 PMID: 27121324
|
| [60] |
BurdCE, JeckWR, LiuY, et al. . Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010, 6(12): e1001233 PMID: 21151960 PMCID: 2996334
|
| [61] |
LiuY, SanoffHK, ChoH, et al. . INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One, 2009, 4(4): e5027 PMID: 19343170 PMCID: 2660422
|
| [62] |
HoldtLM, BeutnerF, ScholzM, et al. . ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010, 30(3): 620-627 PMID: 20056914
|
| [63] |
JohnsonAD, HwangSJ, VoormanA, et al. . Resequencing and clinical associations of the 9p21.3 region: a comprehensive investigation in the Framingham heart study. Circulation, 2013, 127(7): 799-810 PMID: 23315372 PMCID: 3686634
|
| [64] |
MotterleA, PuX, WoodH, et al. . Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet., 2012, 21(18): 4021-4029 PMID: 22706276 PMCID: 3428153
|
| [65] |
ZhaoW, SmithJA, MaoG, et al. . The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics, 2015, 8: 21 PMID: 25958224 PMCID: 4432789
|
| [66] |
HoldtLM, StahringerA, SassK, et al. . Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun, 2016, 7: 12429 PMID: 27539542 PMCID: 4992165
|
| [67] |
ZhouX, HanX, WittfeldtA, et al. . Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-kappaB pathway. RNA Biol, 2016, 13(1): 98-108 PMID: 26618242
|
| [68] |
JooM, WrightJG, HuNN, et al. . Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol, 2007, 292(5): L1219-1226 PMID: 17220375
|
| [69] |
GuoJ, CasolaroV, SetoE, et al. . Yin-Yang 1 activates interleukin-4 gene expression in T cells. J Biol Chem, 2001, 276(52): 48871-48878 PMID: 11687571
|
| [70] |
HasegawaA, YasukawaM, SakaiI, et al. . Transcriptional down-regulation of CXC chemokine receptor 4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol, 2001, 166(2): 1125-1131 PMID: 11145693
|
| [71] |
HarismendyO, NotaniD, SongX, et al. . 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature, 2011, 470(7333): 264-268 PMID: 21307941 PMCID: 3079517
|
| [72] |
BattleTE, LynchRA, FrankDA. Signal transducer and activator of transcription 1 activation in endothelial cells is a negative regulator of angiogenesis. Cancer Res, 2006, 66(7): 3649-3657 PMID: 16585190
|
| [73] |
KatzeMG, HeY, GaleMJr.. Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002, 2(9): 675-687 PMID: 12209136
|
| [74] |
XuZ, WeiW, GagneurJ, et al. . Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol, 2011, 7: 468 PMID: 21326235 PMCID: 3063692
|
| [75] |
CamblongJ, BeyrouthyN, GuffantiE, et al. . Transacting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev, 2009, 23(13): 1534-1545 PMID: 19571181 PMCID: 2704465
|
| [76] |
GagneurJ, SinhaH, PerocchiF, et al. . Genome-wide allele-and strand-specific expression profiling. Mol Syst Biol, 2009, 5: 274 PMID: 19536197 PMCID: 2710863
|
| [77] |
PelechanoV, SteinmetzLM. Gene regulation by antisense transcription. Nat Rev Genet, 2013, 14(12): 880-893 PMID: 24217315
|