Pedicle screw fixation with kyphoplasty decreases the fracture risk of the treated and adjacent non-treated vertebral bodies: a finite element analysis

Pan Yang , Ying Zhang , Huan-wen Ding , Jian Liu , Lin-qiang Ye , Jin Xiao , Qiang Tu , Tao Yang , Fei Wang , Guo-gang Sun

Current Medical Science ›› 2016, Vol. 36 ›› Issue (6) : 887 -894.

PDF
Current Medical Science ›› 2016, Vol. 36 ›› Issue (6) : 887 -894. DOI: 10.1007/s11596-016-1680-x
Article

Pedicle screw fixation with kyphoplasty decreases the fracture risk of the treated and adjacent non-treated vertebral bodies: a finite element analysis

Author information +
History +
PDF

Abstract

Adjacent vertebral fractures are common in patients with osteoporotic vertebral compression fractures (OVCFs) after kyphoplasty. This finite element study was to examine whether short segment pedicle screw fixation (PSF) with kyphoplasty may decrease the fracture risk of the treated and adjacent non-treated vertebrae after kyphoplasty for OVCFs. By simulating cement augmentation with or without short segment pedicle screw fixation (PSF), two tridimensional, anatomically detailed finite element models of the T10–L2 functional spinal junction were developed. The insertion of pedicle screws into the intact vertebra apparently decreased the stress distribution of the treated vertebra in vertical compression and other load situations. The stress distribution in the bone structures of the intact vertebra adjacent to the intact-screwed vertebra was much less than that in the one adjacent to the treated vertebra. The insertion of pedicle screws into the intact vertebra greatly decreased the maximum displacement of the cortical bones and cancellous bones of the vertebrae. Our results indicated that short segment PSF with kyphoplasty may decrease the fracture risk of the treated and adjacent non-treated vertebrae in the management of OVCFs.

Keywords

finite element analysis / osteoporotic vertebral compression fractures / kyphoplasty / biomechanics / pedicle screw fixation

Cite this article

Download citation ▾
Pan Yang, Ying Zhang, Huan-wen Ding, Jian Liu, Lin-qiang Ye, Jin Xiao, Qiang Tu, Tao Yang, Fei Wang, Guo-gang Sun. Pedicle screw fixation with kyphoplasty decreases the fracture risk of the treated and adjacent non-treated vertebral bodies: a finite element analysis. Current Medical Science, 2016, 36(6): 887-894 DOI:10.1007/s11596-016-1680-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HasseriusR, KarlssonMK, JonssonB, et al. . Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly—a 12-and 22-year follow-up of 257 patients. Calcif Tissue Int, 2005, 76(4): 235-242 PMID: 15812579

[2]

KorovessisP, RepantisT, MillerLE, et al. . Initial clinical experience with a novel vertebral augmentation system for treatment of symptomatic vertebral compression fractures: a case series of 26 consecutive patients. BMC Musculoskelet Disord, 2011, 12: 206 PMID: 21939548 PMCID: 3189204

[3]

MajdME, FarleyS, HoltRT. Preliminary outcomes and efficacy of the first 360 consecutive kyphoplasties for the treatment of painful osteoporotic vertebral compression fractures. Spine J, 2005, 5(3): 244-255 PMID: 15863078

[4]

GerlingMC, EubanksJD, PatelR, et al. . Cement augmentation of refractory osteoporotic vertebral compression fractures: survivorship analysis. Spine, 2011, 36(19): 1266-E1269

[5]

PratherH, van DillenL, MetzlerJP, et al. . Prospective measurement of function and pain in patients with non-neoplastic compression fractures treated with vertebroplasty. J Bone Joint Surg Am, 2006, 88(2): 334-341 PMID: 16452745

[6]

TroutAT, KallmesDF, KaufmannTJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol, 2006, 27(1): 217-223 PMID: 16418388

[7]

KimMJ, LindseyDP, HannibalM, et al. . Vertebroplasty versus kyphoplasty: biomechanical behavior under repetitive loading conditions. Spine, 2006, 31(18): 2079-2084 PMID: 16915092

[8]

SunK, LiebschnerMA. Biomechanics of prophylactic vertebral reinforcement. Spine, 2004, 29(13): 1428-1435 PMID: 15223933

[9]

VoormolenMH, LohlePN, JuttmannJR, et al. . The risk of new osteoporotic vertebral compression fractures in the year after percutaneous vertebroplasty. J Vasc Interv Radiol, 2006, 17(1): 71-76 PMID: 16415135

[10]

UppinAA, HirschJA, CenteneraLV, et al. . Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology, 2003, 226(1): 119-124 PMID: 12511679

[11]

GuYT, ZhuDH, LiuHF, et al. . Minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty for preventing secondary fracture after vertebroplasty. J Orthop Surg Res, 2015, 10: 31 PMID: 25890296 PMCID: 4352555

[12]

GuY, ZhangF, JiangX, et al. . Minimally invasive pedicle screw fixation combined with percutaneous vertebroplasty in the surgical treatment of thoracolumbar osteoporosis fracture. J Neurosurg Spine, 2013, 18(6): 634-640 PMID: 23560713

[13]

BelliniCM, GalbuseraF, RaimondiMT, et al. . Biomechanics of the lumbar spine after dynamic stabilization. J Spinal Disord Tech, 2007, 20(6): 423-429 PMID: 17970182

[14]

ZhangL, YangG, WuL, et al. . The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation. Clin Biomech, 2010, 25(2): 166-172

[15]

VillarragaML, BellezzaAJ, HarriganTP, et al. . The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech, 2005, 18(1): 84-91 PMID: 15687858

[16]

PolikeitA, NolteLP, FergusonSJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28(10): 991-996 PMID: 12768136

[17]

XuG, FuX, DuC, et al. . Biomechanical effects of vertebroplasty on thoracolumbar burst fracture with transpedicular fixation: a finite element model analysis. Orthop Traumatol Surg Res, 2014, 100(4): 379-383 PMID: 24835003

[18]

KimJM, ShinDA, ByunDH, et al. . Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty. J Korean Neurosurg Soc, 2012, 52(5): 435-440 PMID: 23323162 PMCID: 3539076

[19]

RohlmannA, ZanderT, RaoM, et al. . Applying a follower load delivers realistic results for simulating standing. J Biomech, 2009, 42(10): 1520-1526 PMID: 19433325

[20]

RohlmannA, ZanderT, RaoM, et al. . Realistic loading conditions for upper body bending. J Biomech, 2009, 42(7): 884-890 PMID: 19268291

[21]

DenisF. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine, 1983, 8(8): 817-831 PMID: 6670016

[22]

GoelVK, KongW, HanJS, et al. . A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine, 1993, 18(11): 1531-1541 PMID: 8235826

[23]

HartensuerR, GehweilerD, SchulzeM, et al. . Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures. BMC Musculoskelet Disord, 2013, 14: 360 PMID: 24359173 PMCID: 3878408

[24]

KimYY, RhyuKW. Recompression of vertebral body after balloon kyphoplasty for osteoporotic vertebral compression fracture. Eur Spine J, 2010, 19(11): 1907-1912 PMID: 20559850 PMCID: 2989275

[25]

HeoDH, ChinDK, YoonYS, et al. . Recollapse of previous vertebral compression fracture after percutaneous vertebroplasty. Osteoporos Int, 2009, 20(3): 473-480 PMID: 18636218

[26]

KimMH, LeeAS, MinSH, et al. . Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Asian Spine J, 2011, 5(3): 180-187 PMID: 21892391 PMCID: 3159067

[27]

RhoYJ, ChoeWJ, ChunYI. Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty. Eur Spine J, 2012, 21(5): 905-911 PMID: 22160212

[28]

LiebschnerMA, RosenbergWS, KeavenyTM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 2001, 26(14): 1547-1554 PMID: 11462084

[29]

BaroudG, NemesJ, HeiniP, et al. . Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J, 2003, 12(4): 421-426 PMID: 12687437 PMCID: 3467784

[30]

BerlemannU, FergusonSJ, NolteLP, et al. . Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br, 2002, 84(5): 748-752 PMID: 12188498

[31]

ChinDK, KimYS, ChoYE, et al. . Efficacy of postural reduction in osteoporotic vertebral compression fractures followed by percutaneous vertebroplasty. Neurosurgery, 2006, 58(4): 695-700 PMID: 16575333

[32]

EdmondstonSJ, SingerKP, DayRE, et al. . Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int, 1997, 7(2): 142-148 PMID: 9166395

[33]

MizrahiJ, SilvaMJ, KeavenyTM, et al. . Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body. Spine, 1993, 18(14): 2088-2096 PMID: 8272965

[34]

GaitanisIN, CarandangG, PhillipsFM, et al. . Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension. Spine J, 2005, 5(1): 45-54 PMID: 15653084

[35]

BeenHD, BoumaGJ. Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs. posterior instrumentation only. Acta Neurochir, 1999, 141(4): 349-357 PMID: 10352744

[36]

PalmisaniM, GasbarriniA, BrodanoGB, et al. . Minimally invasive percutaneous fixation in the treatment of thoracic and lumbar spine fractures. Eur Spine J, 2009, 18(1): 71-74 PMID: 19399533 PMCID: 2899613

[37]

OnerFC, DhertWJ, VerlaanJJ. Less invasive anterior column reconstruction in thoracolumbar fractures. Injury, 2005, 36: B82-B89 PMID: 15993121

[38]

OnerFC, VerlaanJJ, VerboutAJ, et al. . Cement augmentation techniques in traumatic thoracolumbar spine fractures. Spine, 2006, 31(11): S89-S95 PMID: 16685242

[39]

HeD, WuL, ShengX, et al. . Internal fixation with percutaneous kyphoplasty compared with simple percutaneous kyphoplasty for thoracolumbar burst fractures in elderly patients: a prospective randomized controlled trial. Eur Spine J, 2013, 22(10): 2256-2263 PMID: 23996046 PMCID: 3804720

[40]

HsiehJY, WuCD, WangTM, et al. . Reduction of the domino effect in osteoporotic vertebral compression fractures through short-segment fixation with intravertebral expandable pillars compared to percutaneous kyphoplasty: a case control study. BMC Musculoskelet Disord, 2013, 14: 75 PMID: 23452614 PMCID: 3598560

[41]

NardiA, TarantinoU, VenturaL, et al. . Domino effect: mechanic factors role. Clin Cases Miner Bone Metab, 2011, 8(2): 38-42 PMID: 22461815 PMCID: 3279072

[42]

FuentesS, BlondelB, MetellusP, et al. . Percutaneous kyphoplasty and pedicle screw fixation for the management of thoraco-lumbar burst fractures. Eur Spine J, 2010, 19(8): 1281-1287 PMID: 20496038 PMCID: 2989205

[43]

KorovessisP, RepantisT, PetsinisG, et al. . Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine, 2008, 33(4): 100

[44]

VerlaanJJ, DhertWJ, VerboutAJ, et al. . Balloon vertebroplasty in combination with pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst fractures. Spine, 2005, 30(3): 73-E79

[45]

LiH, YangL, XieH, et al. . Surgical outcomes of mini-open Wiltse approach and conventional open approach in patients with single-segment thoracolumbar fractures without neurologic injury. J Biomed Res, 2015, 29(1): 76-82 PMID: 25745479 PMCID: 4342439

[46]

WiltseLL, BatemanJG, HutchinsonRH, et al. . The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am, 1968, 50(5): 919-926 PMID: 5676831

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/