PDF
Abstract
During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS.
Keywords
Cerium oxide nanoparticles
/
nanotechnology
/
reactive oxygen species
/
cerebral ischemic stroke
Cite this article
Download citation ▾
Da Zhou, Ting Fang, Lin-qing Lu, Li Yi.
Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke.
Current Medical Science, 2016, 36(4): 480-486 DOI:10.1007/s11596-016-1612-9
| [1] |
TowfighiA, SaverJL. Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke, 2011, 42(8): 2351-2355 PMID: 21778445
|
| [2] |
CelardoI, TraversaE, GhibelliL. Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol, 2011, 9(1): 47-51 PMID: 21275265
|
| [3] |
CelardoI, PedersenJZ, TraversaE, et al. . Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3(4): 1411-1420 PMID: 21369578
|
| [4] |
WasonMS, ColonJ, DasS, et al. . Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine, 2013, 9(4): 558-569 PMID: 23178284
|
| [5] |
GaoY, ChenK, MaJL, et al. . Cerium oxide nanoparticles in cancer. Onco Targets Ther, 2014, 7: 835-840 PMID: 24920925 PMCID: 4043807
|
| [6] |
HirstSM, KarakotiAS, TylerRD, et al. . Antiinflammatory properties of cerium oxide nanoparticles. Small, 2009, 5(24): 2848-2856 PMID: 19802857
|
| [7] |
EstevezAY, PritchardS, HarperK, et al. . Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med, 2011, 51(6): 1155-1163 PMID: 21704154
|
| [8] |
KimCK, KimT, ChoiIY, et al. . Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl, 2012, 51(44): 11039-11043 PMID: 22968916
|
| [9] |
HeckmanKL, DeCoteauW, EstevezA, et al. . Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano, 2013, 7(12): 10582-10596 PMID: 24266731
|
| [10] |
NiuJ, AzferA, RogersLM, et al. . Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res, 2007, 73(3): 549-559 PMID: 17207782
|
| [11] |
DemaerschalkBM, KleindorferDO, AdeoyeOM, et al. . Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2016, 47(2): 581-641 PMID: 26696642
|
| [12] |
DavisS DonnanGA. 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke, 2009, 40(6): 2266-2267 PMID: 19407232
|
| [13] |
MesséSR, FonarowGC, SmithEE, et al. . Use of tissuetype plasminogen activator before and after publication of the European Cooperative Acute Stroke Study III in Get With The Guidelines-Stroke. Circ Cardiovasc Qual Outcomes, 2012, 5(3): 321-326 PMID: 22550132
|
| [14] |
DoyleKP, SimonRP, Stenzel-PooreMP. Mechanisms of ischemic brain damage. Neuropharmacology, 2008, 55(3): 310-318 PMID: 18308346 PMCID: 2603601
|
| [15] |
WangD, YuanX, LiuT, et al. . Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules, 2012, 17(8): 9803-9817 PMID: 22895026
|
| [16] |
ChanPH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab, 2001, 21(1): 2-14 PMID: 11149664
|
| [17] |
MehtaSH, WebbRC, ErgulA, et al. . Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am J Physiol Regul Integr Comp Physiol, 2004, 286(2): R283-288 PMID: 14592931
|
| [18] |
NakamuraT, KumeT, KatsukiH, et al. . Protective effect of serofendic acid on ischemic injury induced by occlusion of the middle cerebral artery in rats. Eur J Pharmacol, 2008, 586(1-3): 151-155 PMID: 18423598
|
| [19] |
RayPD, HuangBW, TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990 PMID: 22286106 PMCID: 3454471
|
| [20] |
GutteridgeJM, HalliwellB. Comments on review of Free Radicals in Biology and Medicine, second edition, by Barry Halliwell and John M. C. Gutteridge. Free Radic Biol Med, 1992, 12(1): 93-95 PMID: 1537574
|
| [21] |
MatsudaS, UmedaM, UchidaH, et al. . Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats. J Neural Transm, 2009, 116(4): 395-404 PMID: 19238518
|
| [22] |
LeeB, ClarkeD, Al AhmadA, et al. . Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest, 2011, 121(8): 3005-3023 PMID: 21747167 PMCID: 3148740
|
| [23] |
RodrigoR, Fernández-GajardoR, GutiérrezR, et al. . Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets, 2013, 12(5): 698-714 PMID: 23469845
|
| [24] |
CelardoI, De NicolaM, MandoliC, et al. . Ce(3)+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano, 2011, 5(6): 4537-4549 PMID: 21612305
|
| [25] |
NeumannG, HicksJ. Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5 Catalysts for Biomass Upgrading. Topics in Catalysis, 2012, 55(3-4): 196-208
|
| [26] |
KorsvikC, PatilS, SealS, et al. . Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb), 2007, 10: 1056-1058
|
| [27] |
GanesanaM, ErlichmanJS, AndreescuS. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic Biol Med, 2012, 53(12): 2240-2249 PMID: 23085519
|
| [28] |
PirmohamedT, DowdingJM, SinghS, et al. . Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb), 2010, 46(16): 2736-2738
|
| [29] |
DowdingJM, DosaniT, KumarA, et al. . Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chem Commun (Camb), 2012, 48(40): 4896-4898
|
| [30] |
XueY, LuanQF, YangD, et al. . Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C, 2011, 115(11): 4433-4438
|
| [31] |
AsatiA, SantraS, KaittanisC, et al. . Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl, 2009, 48(13): 2308-2312 PMID: 19130532 PMCID: 2923475
|
| [32] |
WangY, YangF, ZhangHX, et al. . Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis, 2013, 4: e783 PMID: 23990023 PMCID: 3763466
|
| [33] |
DasM, PatilS, BhargavaN, et al. . Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials, 2007, 28(10): 1918-1925 PMID: 17222903 PMCID: 1913191
|
| [34] |
SchubertD, DarguschR, RaitanoJ, et al. . Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun, 2006, 342(1): 86-91 PMID: 16480682
|
| [35] |
ChenXM, ChenHS, XuMJ, et al. . Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin, 2013, 34(1): 67-77 PMID: 22842734
|
| [36] |
Pinzon-DazaML, CampiaI, KopeckaJ, et al. . Nanoparticle-and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab, 2013, 14(6): 625-640 PMID: 23869808
|
| [37] |
MatobaT, EgashiraK. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J, 2014, 55(4): 281-286 PMID: 24942639
|
| [38] |
ThompsonBJ, RonaldsonPT. Drug delivery to the ischemic brain. Adv Pharmacol, 2014, 71: 165-202 PMID: 25307217 PMCID: 4281266
|
| [39] |
ReddyMK, LabhasetwarV. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. Faseb J, 2009, 23(5): 1384-1395 PMID: 19124559
|
| [40] |
YunX, MaximovVD, YuJ, et al. . Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab, 2013, 33(4): 583-592 PMID: 23385198 PMCID: 3618396
|
| [41] |
KarakotiAS, Monteiro-RiviereNA, AggarwalR, et al. . Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM (1989), 2008, 60(3): 33-37
|
| [42] |
WongLL, HirstSM, PyeQN, et al. . Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One, 2013, 8(3): e58431 PMID: 23536794 PMCID: 3594235
|
| [43] |
ZhouX, WongLL, KarakotiAS, et al. . Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One, 2011, 6(2): e16733 PMID: 21364932 PMCID: 3043063
|
| [44] |
CiminiA, D'AngeloB, DasS, et al. . Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Abeta aggregates modulate neuronal survival pathways. Acta Biomater, 2012, 8(6): 2056-2067 PMID: 22343002
|
| [45] |
PagliariF, MandoliC, ForteG, et al. . Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano, 2012, 6(5): 3767-3775 PMID: 22524692
|
| [46] |
LinW, HuangYW, ZhouXD, et al. . Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol, 2006, 25(6): 451-457 PMID: 17132603
|
| [47] |
AliliL, SackM, KarakotiAS, et al. . Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials, 2011, 32(11): 2918-2929 PMID: 21269688
|
| [48] |
KarakotiAS, SatyanarayanaV S, BabuK, et al. . Direct Synthesis of Nanoceria in Aqueous Polyhydroxyl Solutions. J Phys Chem C, 2007, 111(46): 17232-17240
|
| [49] |
PortioliC, BenatiD, PiiY, et al. . Short-term biodistribution of cerium oxide nanoparticles in mice: focus on brain parenchyma. Nanosci Nanotechnol Lett, 2013, 5(11): 1174-1181
|
| [50] |
MaJY, MercerRR, BargerM, et al. . Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology, 2011, 5(3): 312-325 PMID: 20925443
|
| [51] |
MaJY, ZhaoH, MercerRR, et al. . Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol, 2012, 262(3): 255-264 PMID: 22613087 PMCID: 4697452
|
| [52] |
PerezJM, AsatiA, NathS, et al. . Synthesis of biocompatible dextran-coated nanoceria with pHdependent antioxidant properties. Small, 2008, 4(5): 552-556 PMID: 18433077
|
| [53] |
AsatiA, SantraS, KaittanisC, et al. . Surface-chargedependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010, 4(9): 5321-5331 PMID: 20690607 PMCID: 2947560
|
| [54] |
KarakotiAS, MunusamyP, HostetlerK, et al. . Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Nanoparticles. Surf Interface Anal, 2012, 44(5): 882-889 PMID: 23430137 PMCID: 3575181
|
| [55] |
DowdingJM, DasS, KumarA, et al. . Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano, 2013, 7(6): 4855-4868 PMID: 23668322 PMCID: 3700371
|
| [56] |
PatilS, ReshetnikovS, HaldarMK, et al. . Surface-Derivatized Nanoceria with Human Carbonic Anhydrase II Inhibitors and Fluorophores: A Potential Drug Delivery Device. J Phys Chem C, 2007, 111(24): 8437-8442
|
| [57] |
VincentA, BabuS, HeckertE, et al. . Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano, 2009, 3(5): 1203-1211 PMID: 19368374 PMCID: 2765572
|
| [58] |
LiM, ShiP, XuC, et al. . Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem Sci, 2013, 4(6): 2536-2542
|
| [59] |
BiJJ, YiL. Effects of integrins and integrin alphavbeta3 inhibitor on angiogenesis in cerebral ischemic stroke. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(3): 299-305 PMID: 24939290
|
| [60] |
ShimamuraN, MatchettG, YatsushigeH, et al. . Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke, 2006, 37(7): 1902-1909 PMID: 16741177
|