Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice

Juan Zou , Pei-shan Cai , Chao-mei Xiong , Jin-lan Ruan

Current Medical Science ›› 2016, Vol. 36 ›› Issue (1) : 21 -30.

PDF
Current Medical Science ›› 2016, Vol. 36 ›› Issue (1) : 21 -30. DOI: 10.1007/s11596-016-1536-4
Article

Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice

Author information +
History +
PDF

Abstract

Alzheimer’s disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative streβs and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.

Keywords

walnut peptides / Alzheimer’s disease / Aβ25-35 / neuroinflammation / oxidative stress

Cite this article

Download citation ▾
Juan Zou, Pei-shan Cai, Chao-mei Xiong, Jin-lan Ruan. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. Current Medical Science, 2016, 36(1): 21-30 DOI:10.1007/s11596-016-1536-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlagiakrishnanK, GillSS, FagarasanuA. Genetics and epigenetics of Alzheimer’s disease. Postgrad Med J, 2012, 88(1043): 522-529 PMID: 22543304

[2]

DurazzoTC, MattssonN, WeinerMW. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimer’s Dement, 2014, 10(3): S122-S145

[3]

PrinceM, BryceR, AlbaneseE, et al. . The global prevalence of dementia: A systematic review and meta analysis. Alzheimer’s Dement, 2013, 9(1): 63-75

[4]

TangBL. Neuronal protein trafficking associated with Alzheimer disease. Cell Adhes Migr, 2009, 3(1): 118-128

[5]

CorporationHP. Protein Tau: prime cause of synaptic and neuronal degeneration in Alzheimer’s disease. Int J Alzheimer’s Dement, 2012, 2012: 1-13

[6]

CaiZ, ZhaoB, RatkaA. Oxidative streβs and β-amyloid protein in Alzheimer’s disease. Neuro Mol Med, 2011, 13(4): 223-250

[7]

ZhangJ, ZhenYFPu-Bu-Ci-Ren. Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav Brain Res, 2013, 244(3): 70-81 PMID: 23396166

[8]

Pérez-SeverianoF, Salvatierra-SánchezR, Rodríguez-PérezM, et al. . S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. Eur J Pharmacol, 2004, 489(3): 197-202 PMID: 15087243

[9]

GaloyanAA, SarkiβsianJS, ChavushyanVA, et al. . Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Aβ25–35 model of Alzheimer’s disease. Alzheimer’s Dement, 2008, 4(5): 332-344

[10]

YamaguchiY, KawashimaS. Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacology, 2001, 412(3): 265-272

[11]

SelkoeDJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. J AD, 2001, 3(1): 75-80

[12]

MhatreM, FloydRA, HensleyK. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J AD, 2004, 6(2): 147-157

[13]

BroussardGJ, MytarJ, LiRC, et al. . The role of inflammatory processes in Alzheimer’s disease. Inflammopharmacology, 2012, 20(3): 109-126 PMID: 22535513

[14]

EmeritJ, EdeasM, BricaireF. Neurodegenerative diseases and oxidative stress. Biomed Pharmacotherapy, 2004, 58(1): 39-46

[15]

De IuliisA, GrigolettoJ, RecchiaA, et al. . A proteomic approach in the study of an animal model of Parkinson’s disease. Clin Chim Acta, 2005, 357(2): 202-209 PMID: 15946658

[16]

QinL, LiuY, WangT, et al. . NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2003, 279(2): 1415-1421 PMID: 14578353

[17]

LeeIT, YangCM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol, 2012, 84(5): 581-590 PMID: 22587816

[18]

HsiehHL, YangCM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioM Res Int, 2013, 2013(4): 1-18

[19]

MooreAH, O’BanionMK. Neuroinflammation and anti-Inflammatory therapy for Alzheimer’s Disease. Adv Drug Delivery Rev, 2002, 54(12): 1627-1656

[20]

EricksonMA, HansenK, BanksWA. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: Protection by the antioxidant N-acetylcysteine. Brain Behav Immun, 2012, 26(7): 1085-1094 PMCID: 3434291 PMID: 22809665

[21]

MartínezML, LabuckasDO, LamarqueAL, et al. . Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agri, 2010, 90(12): 1393-1401

[22]

Kar Wai ClaraS-T, ShridharKS. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agri, 2000, 80(9): 1393-1401

[23]

J Nutr, 2014, 144(4

[24]

MuthaiyahB, EssaMM, LeeM, et al. . Dietary Supplementation of walnuts improves memory deficits and learning skills in transgenic mouse model of Alzheimer’s disease. J AD, 2014, 424): 1397-1405

[25]

Am J Clin Nutr, 2009, 89(5

[26]

PribisP, BaileyRN, RussellAA, et al. . Effects of walnut consumption on cognitive performance in young adults. Brit J Nutr, 2011, 10709): 1393-1401 PMID: 21923981

[27]

WillisLM, Shukitt-HaleB, ChengV, et al. . Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Brit J Nutr, 2009, 101(8): 1140-1144 PMID: 18778529

[28]

GuM, ChenH P, ZhaoMM, et al. . Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci Technol, 2015, 60(60): 213-220

[29]

LeeYW, KimDH, JeonSJ, et al. . Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol, 2013, 704: 70-77 PMID: 23461850

[30]

MorrisR. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth, 1984, 11(1): 47-60

[31]

WeiH, WuG, ChenJ, et al. . (2S)-5, 2', 5'-Trihydroxy-7-methoxyflavanone, a natural product from Abacopteris penangiana, presents neuroprotective effects in vitro and in vivo. Neurochem Res, 2013, 38(8): 1686-1694 PMID: 23670091

[32]

LiuZ, ZhaoX, LiuB, et al. . Jujuboside A, a neuroprotective agent from semen Ziziphi Spinosae ameliorates behavioral disorders of the dementia mouse model induced by Aβ1–42. Eur J Pharmacol, 2014, 738: 206-213 PMID: 24886882

[33]

FuW, LeiY, ChenJ, et al. . Parathelypteriside attenuates cognition deficits in d-galactose treated mice by increasing antioxidant capacity and improving long-term potentiation. Neurobio Learn Mem, 2010, 94(3): 414-421

[34]

RubioJ, DangH, GongM, et al. . Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol, 2007, 45(10): 1882-1890 PMID: 17543435

[35]

YanknerBA, DuffyLK, KirschnerDA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science, 1990, 250(4978): 279-282 PMID: 2218531

[36]

DelobetteS, PrivatA, MauriceT. In vitro aggregation facilitates β-amyloid peptide-(25-35)-inducedamnesia in the rat. Eur J Pharmacol, 1997, 319(1): 1-4 PMID: 9030890

[37]

GulyaevaNV, VictorovIV, StepanichevMY, et al. . Intracerebroventricular administration of beta-amyloid peptide (25-35) induces oxidative stress and neurodegeneration in rat brain. Adv Behav Biol, 1998, 49: 89-98

[38]

OliveiraM M B A P, et al. . Strategies used by hippocampal-and caudate-putamen-lesioned rats in a learning task. Neurobiol Learn Mem, 1997, 68(1): 32-41 PMID: 9195587

[39]

SultanaR, ButterifieldDA. Role of oxidative stress in the progression of Alzheimer’s Disease. JAD, 2010, 19(2): 341-353 PMID: 20061649

[40]

TaylerH, FraserT, MinersJS, et al. . Oxidative balance in Alzheimer’s Disease: relationship to APOE, Braak tangle stage, and the concentrations of soluble and insoluble amyloid-β. JAD, 2010, 22(4): 1363-1373 PMID: 20930272

[41]

ButterfieldDA, LauderbackCM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptideassociated free radical oxidative stress. Free Radical Bio-Med, 2002, 32: 1050-1060

[42]

GardnerAM, XuFH, FadyC, et al. . Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radical BioMed, 1997, 22(1–2): 73-83

[43]

FiersW, BeyaertR, DeclercqW, et al. . More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999, 18(54): 7719-7730 PMID: 10618712

[44]

MillerDB, O’CallaghanJP. Aging, stress and the hippocampus. Ageing Res Rev, 2005, 4(2): 123-140 PMID: 15964248

[45]

YargicogluP, SahinE, GümüslüS, et al. . The effect of sulfur dioxide inhalation on active avoidance learning, antioxidant status and lipid peroxidation during aging. Neurotoxicol Teratol, 2007, 29(2): 211-218 PMID: 17197156

[46]

ButterfieldDA. Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res, 2004, 1000(1–2): 1-7 PMID: 15053946

[47]

ZampagniM, WrightD, CascellaR, et al. . Novel S-acyl glutathione derivatives prevent amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models. Free Radical BioMed, 2012, 52(8): 1362-1371

[48]

MecocciP, MacGarveyU, KaufmanAE, et al. . Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol, 1993, 34(4): 609-616 PMID: 8215249

[49]

MamelakM. Alzheimer’ s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging, 2007, 28(9): 1340-1360 PMID: 16837107

[50]

RallL C, RoubenoffR, MeydaniSN, et al. . Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a marker of oxidative stress in rheumatoid arthritis and aging: effect of progressive resistance training. J Nutr Biochem, 2000, 11(11–12): 581-584 PMID: 11137896

[51]

HolmesC, CunninghamC, ZotovaE, et al. . Systemic inflammation and disease progression in Alzheimer disease. Retour Au Numéro, 2009, 73(14): 768-774

[52]

ZhuH, JiaZ, MisraH, et al. . Oxidative stress and redox signaling mechanisms of alcoholic liver disease: Updated experimental and clinical evidence. J Digest Dis, 2012, 13(3): 133-142

[53]

HenekaM, ObanionM. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol, 2007, 184(1): 69-91 PMID: 17222916

[54]

XiaW, LiD W, XiangL, et al. . Neuroprotective effects of an aqueous extract of futokadsura stem in an Aβ-induced Alzheimer’s disease-like rat model. Chinese J Physiol, 2015, 58(2): 104-113

[55]

ClarkIA, AllevaLM, VisselB. The roles of TNF in brain dysfunction and disease. Pharmacol Therapeut, 2010, 128(3): 519-548

[56]

HeyserCJ, MasliahE, SamimiA, et al. . Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. P Natl Acad Sci, 1997, 94(4): 1500-1505

[57]

HuellM, StraussS, VolkB, et al. . Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol, 1995, 89(6): 544-551 PMID: 7676810

[58]

LiuL, ChanC. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev, 2014, 15: 6-15 PMID: 24561250

[59]

García-AyllónMS, SilveyraMX, Sáez-ValeroJ. Aβsociation between acetylcholinesterase and β-amyloid peptide in Alzheimer’s cerebrospinal fluid. Chem-Biol Interact, 2008, 175(1–3): 209-215 PMID: 18554581

[60]

MeloJB, AgostinhoP, OliveiraCR. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res, 2003, 45(1): 117-127 PMID: 12507730

[61]

DiazA, MendietaL, ZentenoE, et al. . The role of NOS in the impairment of spatial memory and damaged neurons in rats injected with amyloid beta 25–35 into the temporal cortex. Pharmacol Biochem Be, 2011, 98(1): 67-75

[62]

LawA, GauthierS, QuirionR. Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev, 2001, 35(1): 73-96 PMID: 11245887

[63]

SingletonAB, GibsonAM, MckeithIG, et al. . Nitric oxide synthase gene polymorphisms in Alzheimer’s disease and dementia with Lewy bodies. Neurosci Lett, 2001, 303(1): 33-36 PMID: 11297817

[64]

GuoLY, HungTM, BaeKH, et al. . Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. EurJ Pharmacol, 2008, 591(1–3): 293-299

[65]

YuanQ, ZhangX, LiuZ, et al. . Ethanol extract of Adiantum capillus-veneris L. suppresses the production of inflammatory mediators by inhibiting NF-κB activation. J Ethnopharmacol, 2013, 147(3): 603-611 PMID: 23542147

[66]

WangH, WuT, QiJ, et al. . Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrolhages through down-regulation of MAPK/NF-kB signaling pathways. J Huazhong Univ Sci Technol [Med Sci], 2013, 33(4): 463-469

[67]

ZhangZH, YuLJ, HuiXC, et al. . Hydroxy-safflor Yellow A attenuates Aβ1–42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res, 201472-80

[68]

WangC, LiJ, LiuQ, et al. . Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett, 2011, 491(2): 127-132 PMID: 21238541

[69]

LuoY, YangY P, LiuJ, et al. . Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res, 2014, 1565(20): 37-47 PMID: 24735651

[70]

LeeSY, LeeJW, LeeH, et al. . Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol Brain Res, 2005, 140(1–2): 45-54 PMID: 16153742

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/