β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK

Miao-miao Ma , Xiao-li Zhu , Li Wang , Xiao-fang Hu , Zhong Wang , Jin Zhao , Yi-tong Ma , Yi-ning Yang , Bang-dang Chen , Fen Liu

Current Medical Science ›› 2016, Vol. 36 ›› Issue (1) : 1 -7.

PDF
Current Medical Science ›› 2016, Vol. 36 ›› Issue (1) : 1 -7. DOI: 10.1007/s11596-016-1533-7
Article

β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK

Author information +
History +
PDF

Abstract

β3-adrenoceptor (β3-AR) has been shown to promote myocardial apoptosis. However, the exact physiological role and importance of this receptor in the human myocardium, and its underlying mode of action, have not been fully elucidated. The present study aimed to determine the effects of β3-AR on the promotion of myocardial apoptosis and on norepinephrine (NE) injury. We analyzed NE-induced cardiomyocyte (CM) apoptosis by using a TUNEL and an annexin V/propidium iodide apoptosis aβsay. Furthermore, we investigated the NE-induced expreβsion of the apoptosis marker genes Akt and p38MAPK, their phosphorylated counterparts p-Akt and p-p38MAPK, caspase-3, Bcl-2, and Bax. In addition, we determined the effect of a 48-h treatment with a β3-AR agonist and antagonist on expression of these marker genes. β3-AR overexpression was found to increase CM apoptosis, accompanied by an increased expression of caspase-3, bax/bcl-2, and p-p38MAPK. In contrast, the β3-blocker reduced apoptosis of CMs and the associated elevated Akt expression. We identified a novel and potent anti-apoptosis mechanism via the PI3K/Akt pathway and a pro-apoptosis pathway mediated by p38MAPK.

Keywords

β3-adrenoreceptor / norepinephrine / cardiomyocytes / apoptosis / Akt / p38MAPK

Cite this article

Download citation ▾
Miao-miao Ma, Xiao-li Zhu, Li Wang, Xiao-fang Hu, Zhong Wang, Jin Zhao, Yi-tong Ma, Yi-ning Yang, Bang-dang Chen, Fen Liu. β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK. Current Medical Science, 2016, 36(1): 1-7 DOI:10.1007/s11596-016-1533-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MersmannHJ. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci, 1998, 76(1): 160-172 PMID: 9464897

[2]

ChengHJ, GrantKA, HanQH, et al. . Up-regulation and functional effect of cardiac beta3-adrenoreceptors in alcoholic monkeys. Alcohol Clin Exp Res, 2010, 34(7): 1171-1181 PMCID: 3142678 PMID: 20477780

[3]

MontaudonE, DubreilL, LalanneV, et al. . Cardiac effects of long-term active immunization with the second extracellular loop of human β1-and/or β3-adrenoceptors in Lewis rats. Pharmacol Res, 2015, 100(7): 210-219 PMID: 26276085

[4]

UrsinoMG, VasinaV, RaschiE, et al. . The beta3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res, 2009, 59(4): 221-234 PMID: 19429463

[5]

MichelMC, OchodnickyP, SummersRJ. Tissue functions mediated by beta(3)-adrenoceptors-findings and challenges. Naunyn Schmiedebergs Arch Pharmacol, 2010, 382(2): 103-108 PMCID: 2904903 PMID: 20517594

[6]

MoniotteS, KobzikL, FeronO, et al. . Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 2001, 103(12): 1649-1655 PMID: 11273992

[7]

BhadadaSV, PatelBM, MehtaAA, et al. . beta(3) Receptors: role in cardiometabolic disorders. Ther Adv Endocrinol Metab, 2011, 2(2): 65-79 PMCID: 3474626 PMID: 23148172

[8]

BalligandJL. Beta3-adrenoreceptors in cardiovasular diseases: new roles for an "old" receptor. Curr Drug Deliv, 2013, 10(1): 64-66 PMID: 22998044

[9]

WattsVL, SepulvedaFM, CingolaniOH, et al. . Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol, 2013, 62: 8-17 PMCID: 4041152 PMID: 23643588

[10]

RozecB, QuangTT, NoireaudJ, et al. . Mixed beta3-adrenoceptor agonist and alpha1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol, 2006, 147(7): 699-706 PMCID: 1751500 PMID: 16474420

[11]

GanRT, LiWM, WangX, et al. . Effect of beta3-adrenoceptor antagonist on the cardiac function and expression of endothelial nitric oxide synthase in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue (Chinese), 2007, 19(11): 675-678

[12]

TamburellaA, MicaleV, LeggioGM, et al. . The beta3 adrenoceptor agonist, amibegron (SR58611A) counteracts stress-induced behavioral and neurochemical changes. Eur Neuropsychopharmacol, 2010, 20(10): 704-713 PMID: 20537869

[13]

KongYH, LiWM, TianY. Effect of beta3-adrenoreceptors agonist on beta3-adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue (Chinese), 2004, 16(3): 142-147

[14]

ZhengM, FuYH, XiaoDZ. β3-AR regulates the anti-apoptotic effect of myocardial MIF through cGMP-PKG-p38. Zhongguo Bingli Shengli Zazhi (Chinese), 2010, 26(10): 1966-1977

[15]

McCainML, AgarwalA, NesmithHW, et al. . Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials, 2014, 35(21): 5462-5471 PMCID: 4057039 PMID: 24731714

[16]

YunCF, ChingSC, SuiCY, et al. . Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species–TNFα–caspase signaling pathway. Cardiovasc Res, 2004, 62(3): 558-567

[17]

DalMM, CasiniG, FilippiL, et al. . Functional involvement of beta3-adrenergic receptors in melanoma growth and vascularization. J Mol Med (Berl), 2013, 91(12): 1407-1419

[18]

ChernogubovaE, CannonB, BengtssonT. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology, 2004, 145(1): 269-280 PMID: 14551227

[19]

RengoG, PaganoG, ParisiV, et al. . Changes of plasma norepinephrine and serum N-terminal pro-brain natriuretic peptide after exercise training predict survival in patients with heart failure. Int J Cardiol, 2014, 171(3): 384-389 PMID: 24388546

[20]

CommunalC, SinghK, PimentelDR, et al. . Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 1998, 98(13): 1329-1334 PMID: 9751683

[21]

GauthierC, RozecB, ManouryB, et al. . Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep, 2011, 8(3): 184-192 PMID: 21633786

[22]

NiuX, WattsVL, CingolaniOH, et al. . Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol, 2012, 59(22): 1979-1987 PMCID: 3366593 PMID: 22624839

[23]

RosaGM, FerreroS, NittiVW, et al. . Cardiovascular safety of β(3)-adrenoceptor agonists for the treatment of patients with overactive bladder syndrome. Eur Urol, 2015, 9(7): 864-867

[24]

MichelMC, HardingSE, BondRA. Are there functional beta(3)-adrenoceptors in the human heart. Br J Pharmacol, 2011, 162(4): 817-822 PMCID: 3042193 PMID: 20735409

[25]

LauberK, BohnE, KroberSM, et al. . Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell, 2003, 113(6): 717-730 PMID: 12809603

[26]

OlivettiG, AbbiR, QuainiF, et al. . Apoptosis in the Failing Human Heart. N Engl J Med, 1997, 336(16): 1131-1141 PMID: 9099657

[27]

YinC, KnudsonCM, KorsmeyerSJ, et al. . Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997, 385(6617): 637-640 PMID: 9024662

[28]

CzabotarPE, LesseneG, StrasserA, et al. . Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 2014, 15(1): 49-63 PMID: 24355989

[29]

JhaveriDJ, MackayEW, HamlinAS, et al. . Norepinephrine directly activates adult hippocampal precursors via beta3-adrenergic receptors. J Neurosci, 2010, 30(7): 2795-2806 PMCID: 2837927 PMID: 20164362

[30]

SussmanMA, VolkersM, FischerK, et al. . Myocardial AKT: the omnipresent nexus. Physiol Rev, 2011, 91(3): 1023-1070 PMCID: 3674828 PMID: 21742795

[31]

CittadiniA, MontiMG, IaccarinoG, et al. . Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Gene Ther, 2006, 13(1): 8-19 PMCID: 2999753 PMID: 16094411

[32]

KitamuraY, KoideM, AkakabeY, et al. . Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. J Biol Chem, 2014, 289(5): 2788-2800 PMCID: 3908411 PMID: 24338479

[33]

HammerschmidtS, KuhnH, GessnerC, et al. . Stretch-induced alveolar type II cell apoptosis: role of endogenous bradykinin and PI3K-Akt signaling. Am J Respir Cell Mol Biol, 2007, 37(6): 699-705 PMID: 17630321

[34]

OmuraT, YoshiyamaM, KimS, et al. . Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression. Arterioscler Thromb Vasc Biol, 2004, 24(2): 270-275 PMID: 14684425

[35]

De ChiaraG, MarcocciME, TorciaM, et al. . Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem, 2006, 281(30): 21353-21361 PMID: 16714293

[36]

UferC, GermackR. Cross-regulation between beta 1-and beta 3-adrenoceptors following chronic beta-adrenergic stimulation in neonatal rat cardiomyocytes. Br J Pharmacol, 2009, 158(1): 300-313 PMCID: 2795240 PMID: 19719783

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/