Hepcidin and iron metabolism in non-diabetic obese and type 2 diabetic rats

Yue Chen , Hui-qing Yin , Hao-ling Liu , Lei Xiu , Xiao-yu Peng

Current Medical Science ›› 2015, Vol. 35 ›› Issue (6) : 851 -857.

PDF
Current Medical Science ›› 2015, Vol. 35 ›› Issue (6) : 851 -857. DOI: 10.1007/s11596-015-1517-z
Article

Hepcidin and iron metabolism in non-diabetic obese and type 2 diabetic rats

Author information +
History +
PDF

Abstract

The aim of this study was to investigate the changes of iron levels and hepatic regulatory molecules expression involved in iron metabolism in non-diabetic obese/type 2 diabetic rat models. Male Wistar rats were divided into 3 groups: control group, non-diabetic obese group and type 2 diabetic group (n=20 each). The rats were evaluated physiologically and biochemically. The hepatic histopathological changes were observed using haematoxylin and eosin (HE) staining. The mRNA expression patterns of hepcidin, interleukin-6 (IL-6), hypoxia-inducible factor (HIF) and ferroportin (Fpn) in the rat liver in control group, non-diabetic obese group and type 2 diabetic group were analyzed by real-time RT-PCR. The protein expression patterns of hepcidin in liver of each group were further analyzed by immunohistochemistry and Western blotting. As compared with control group, the ferritin in non-diabetic obese group and type 2 diabetic group was increased significantly (P<0.001). However, there was no significant difference in soluble transferring receptor (sTfR):ferritin ratio among the three groups (P>0.05). The real-time RT-PCR, immunohistochemistry and Western blotting results all revealed that the expression levels of hepcidin in non-diabetic obese group and type 2 diabetic group were elevated significantly as compared with those in control group (P<0.001). The expression levels of hepcidin mRNA between non-diabetic obese group and type 2 diabetic group showed no significant difference (P>0.05). However, the protein expression levels of hepcidin in type 2 diabetic group were significantly higher than those in non-diabetic obese group (P<0.05). Compared to control group, the expression levels of IL-6 mRNA in non-diabetic obese group and type 2 diabetic group were increased significantly and the expression levels of Fpn mRNA decreased (P<0.05). However, the expression levels of HIF mRNA had no significant difference among three groups. It is suggested that iron metabolism is substantially disturbed in non-diabetic obese and type 2 diabetic rats probably by the abnormal expression of hepcidin in chronic inflammatory status. The increased hepcidin may restrain the iron release from the cells by affecting the expression of Fpn, which probably associates with the development of diabetic complication.

Keywords

non-diabetic obesity / type 2 diabetes / hepcidin / iron metabolism

Cite this article

Download citation ▾
Yue Chen, Hui-qing Yin, Hao-ling Liu, Lei Xiu, Xiao-yu Peng. Hepcidin and iron metabolism in non-diabetic obese and type 2 diabetic rats. Current Medical Science, 2015, 35(6): 851-857 DOI:10.1007/s11596-015-1517-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShawJE, SicreeRA, ZimmetPZ, et al. . Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010, 87(1): 4-14 PMID: 19896746

[2]

LukicL, LalicNM, RajkovicN, et al. . Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. Int J Environ Res Public Health, 2014, 11(4): 3586-3598 PMCID: 4025026 PMID: 24686488

[3]

BaoW, RongY, RongS, et al. . Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med, 2012, 10: 119 PMCID: 3520769 PMID: 23046549

[4]

DulalHP, LamsalM, SharmaSK, et al. . Status of iron, oxidant and antioxidants in chronic type 2 diabetes mellitus patients. Nepal Med Coll J, 2014, 16(1): 54-57 PMID: 25799813

[5]

WangX, FangX, WangF, et al. . Pleiotropic actions of iron balance in diabetes mellitus. Rev Endocr Metab Disord, 2015, 16(1): 15-23 PMID: 25520048

[6]

RishiG, WallanceDF, SubramaniamVN. Hepcidin: Regulation of the master iron regulator. Biosci Reports, 2015, 35(3): 00192

[7]

DiehlAM, GoodmanZ, IshakKG. Alcohol-like liver disease in nonalcoholics. A clinical and histologic comparison with alcohol-induced liver injury. Gastroenterology, 1988, 95(4): 1056-1062

[8]

KnodellRG, IshakKG, WollmanJ. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology, 1981, 1(5): 431-435 PMID: 7308988

[9]

JalaliMT, MohseniA, LatifiM, et al. . Evaluation of diagnostic efficacy of serum sTfR assay in iron-deficiency anemia and Beta-thalassemia trait in Shafa hospital, Ahvaz, Iran 2010. Eur Rev Med Phamacol Sci, 2012, 16(10): 1441-1445

[10]

XianS, ZhuCH, WeiMY, et al. . Relationship between the activation of hepatic stellate cell and the early stage of liver fibrosis in experimental diabetic tree shrews. Basic Clin Med, 2006, 26(6): 621-625

[11]

AbboudS, HaileDJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem, 2000, 275(26): 19906-19912 PMID: 10747949

[12]

IvanDD, DianeMW, JerryK, et al. . The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell, 2007, 18(7): 2569-2578

[13]

BozziniC, GirelliD, OlivieriO, et al. . Prevalence of body iron excess in the metabolic syndrome. Diabetes Care, 2005, 28(8): 2061-2063 PMID: 16043762

[14]

SheuWH, ChenYT, LeeWJ, et al. . A relationship between serum ferritin and the insulin resistance syndrome is present in non-diabetic women but not in non-diabetic men. Clin Endocrinol (Oxf), 2003, 58(3): 380-385

[15]

JiangR, MansonJE, MeigsJB, et al. . Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA, 2004, 291(6): 711-717 PMID: 14871914

[16]

JehnML, GuallarE, ClarkJM, et al. . A prospective study of plasma ferritin level and incident diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol, 2007, 165(9): 1047-1054 PMID: 17284722

[17]

DongiovanniP, FracanzaniAL, FargionS, et al. . Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol, 2011, 55(4): 920-932 PMID: 21718726

[18]

RajpathakSN, CrandallJP, Wylie-RosettJ, et al. . The role of iron in type 2 diabetes in humans. Biochim Biophys Acta, 2009, 1790(7): 671-681 PMID: 18501198

[19]

Kalantar-ZadehK, RegidorDL, McAllisterCJ, et al. . Time-dependent associations between iron and mortality in hemodialysis patients. J Am Soc Nephrol, 2005, 16(10): 3070-3080 PMID: 16033854

[20]

YanoffLB, MenzieCM, DenkingerB, et al. . Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond), 2007, 31(9): 1412-1419

[21]

NemethE, RiveraS, GabayanV, et al. . IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest, 2004, 113(9): 1271-1276 PMCID: 398432 PMID: 15124018

[22]

PrinceOD, LangdonJM, LaymanAJ, et al. . Late stage erythroid precursor production is impaired in mice with chronic inflammation. Haematologica, 2012, 97(11): 1648-1656 PMCID: 3487436 PMID: 22581006

[23]

NathB, SzaboG. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology, 2012, 55(2): 622-633 PMCID: 3417333 PMID: 22120903

[24]

XiaoH, GuZ, WangG, et al. . The possible mechanisms underlying the impairment of HIF-1a pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci, 2013, 10(10): 1412-1421 PMCID: 3752727 PMID: 23983604

[25]

GaoW, FergusonG, ConnellP, et al. . Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1a expression. Diab Vasc Dis Res, 2014, 11(4): 270-280 PMID: 24853909

[26]

DonovanA, BrownlieA, ZhouY, et al. . Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403(6771): 776-781 PMID: 10693807

[27]

McKieAT, MarcianiP, RolfsA, et al. . A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell, 2000, 5: 299-309 PMID: 10882071

[28]

GanzT, NemethE. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol, 2006, 290(2): G199-G203

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/