Tie-1: A potential target for anti-angiogenesis therapy

Ping Yang , Na Chen , Jing-hui Jia , Xue-jiao Gao , Shi-han Li , Jing Cai , Zehua Wang

Current Medical Science ›› 2015, Vol. 35 ›› Issue (5) : 615 -622.

PDF
Current Medical Science ›› 2015, Vol. 35 ›› Issue (5) : 615 -622. DOI: 10.1007/s11596-015-1479-1
Article

Tie-1: A potential target for anti-angiogenesis therapy

Author information +
History +
PDF

Abstract

The tyrosine kinase system angiopoietin (Ang)/Tie interacts with vascular endothelial growth factor pathway and regulates vessel quiescence in adults as well as later steps of the angiogenic cascade related to vessel maturation. Since all Angs are able to bind to Tie-2 but none binds to Tie-1, the function of Tie-2 and its ligands have captured attention. However, emerging evidence indicates unique roles of the orphan receptor Tie-1 in angiogenesis under physiological and pathological conditions. It is required for maintaining vascular endothelial cell integrity and survival during murine embryo development and in adult and may be involved in modulating differentiation of hematopoietic cells in adult. Tie-1 exhibits poor tyrosine kinase activity and signals via forming heterodimers with Tie-2, inhibiting Tie-2 signaling mediated by Angs. This inhibition can be relieved by Tie-1 ectodomain cleavage mediated by tumor- and inflammatory-related factors, which causes destabilization of vessels and initiates vessel remodeling. Up-regulated Tie-1 expression has been found not only in some leukemia cells and tumor related endothelial cells but also in cytoplasm of carcinoma cells of a variety of human solid tumors, which is associated with tumor progression. In addition, it has pro-inflammatory functions in endothelial cells and is involved in some inflammatory diseases associated with angiogenesis. Recent research indicated that Tie-1 gene ablation exhibited significant effects on tumor blood- and lymph-angiogenesis and improved anti-Ang therapy, suggesting Tie-1 may be a potential target for tumor anti-angiogenesis treatment.

Keywords

Tie / receptor tyrosine kinase / angiogenesis / tumor / targeting therapy

Cite this article

Download citation ▾
Ping Yang, Na Chen, Jing-hui Jia, Xue-jiao Gao, Shi-han Li, Jing Cai, Zehua Wang. Tie-1: A potential target for anti-angiogenesis therapy. Current Medical Science, 2015, 35(5): 615-622 DOI:10.1007/s11596-015-1479-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JainRK, CarmelietP. SnapShot: Tumor angiogenesis. Cell, 2012, 149(6): 1408-1408 PMID: 22682256

[2]

DonnemT, HuJ, FergusonM, et al. . Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment. Cancer Med, 2013, 2(4): 427-436 PMCID: 3799277 PMID: 24156015

[3]

Nat Rev Cancer, 2008, 8(8

[4]

VerstovsekS, EsteyE, ManshouriT, et al. . High expression of the receptor tyrosine kinase Tie-1 in acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma, 2001, 423): 511-516 PMID: 11699417

[5]

ErogluZ, SteinCA, PalSK. Targeting angiopoietin-2 signaling in cancer therapy. Expert Opin Investig Drugs, 2013, 22(7): 813-825 PMID: 23621441

[6]

GeraldD, ChintharlapalliS, AugustinHG, et al. . Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res, 2013, 73(6): 1649-1657 PMID: 23467610

[7]

D'AmicoG, KorhonenEA, AnisimovA, et al. . Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. J Clin Invest, 2014, 124(2): 824-834 PMCID: 3904604 PMID: 24430181

[8]

PLoS One, 2012, 7(1

[9]

AugustinHG, KohGY, ThurstonG, et al. . Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol, 2009, 103): 165-177 PMID: 19234476

[10]

CarmelietP, JainRK. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347): 298-307 PMCID: 4049445 PMID: 21593862

[11]

FagianiE, ChristoforiG. Angiopoietins in angiogenesis. Cancer Lett, 2013, 328(1): 18-26 PMID: 22922303

[12]

LeeHJ, ChoCH, HwangSJ, et al. . Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J, 2004, 18(11): 1200-1208 PMID: 15284220

[13]

BrunckhorstMK, WangH, LuR, et al. . Angiopoietin-4 promotes glioblastoma progression by enhancing tumor cell viability and angiogenesis. Cancer Res, 2010, 70(18): 7283-7293 PMCID: 2940950 PMID: 20823154

[14]

KimKL, ShinIS, KimJM, et al. . Interaction between Tie receptors modulates angiogenic activity of angiopoietin2 in endothelial progenitor cells. Cardiovasc Res, 2006, 72(3): 394-402 PMID: 17054925

[15]

SeegarTC, EllerB, Tzvetkova-RobevD, et al. . Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell, 2010, 37(5): 643-655 PMCID: 2841065 PMID: 20227369

[16]

SongSH, KimKL, LeeKA, et al. . Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun, 2012, 419(2): 281-286 PMID: 22342979

[17]

WooKV, BaldwinHS. Role of Tie1 in shear stress and atherosclerosis. Trends Cardiovasc Med, 2011, 21(4): 118-123 PMCID: 3382080 PMID: 22681967

[18]

YuanHT, VenkateshaS, ChanB, et al. . Activation of the orphan endothelial receptor Tie1 modifies Tie2-mediated intracellular signaling and cell survival. FASEB J, 2007, 21(12): 3171-3183 PMID: 17504972

[19]

PartanenJ, ArmstrongE, MakelaTP, et al. . A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol, 1992, 12(4): 1698-1707 PMCID: 369613 PMID: 1312667

[20]

DumontDJ, GradwohlGJ, FongGH, et al. . The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene, 1993, 8(5): 1293-1301 PMID: 8386827

[21]

YabkowitzR, MeyerS, YanagiharaD, et al. . Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood, 1997, 90(2): 706-715 PMID: 9226171

[22]

HansenTM, SinghH, TahirTA, et al. . Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal, 2010, 22(3): 527-532 PMCID: 2807028 PMID: 19922791

[23]

KorhonenJ, PartanenJ, ArmstrongE, et al. . Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood, 1992, 80(10): 2548-2555 PMID: 1384789

[24]

KorhonenJ, PolviA, PartanenJ, et al. . The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene, 1994, 9(2): 395-403 PMID: 7507228

[25]

SatoTN, TozawaY, DeutschU, et al. . Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 1995, 376(6535): 70-74 PMID: 7596437

[26]

PoratRM, GrunewaldM, GlobermanA, et al. . Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies. Circ Res, 2004, 94(3): 394-401 PMID: 14670840

[27]

D'AmicoG, KorhonenEA, WaltariM, et al. . Loss of endothelial Tie1 receptor impairs lymphatic vessel development-brief report. Arterioscler Thromb Vasc Biol, 2010, 30(2): 207-209 PMID: 19910638

[28]

PuriMC, RossantJ, AlitaloK, et al. . The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J, 1995, 14(23): 5884-5891 PMCID: 394706 PMID: 8846781

[29]

PuriMC, PartanenJ, RossantJ, et al. . Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development, 1999, 126(20): 4569-4580 PMID: 10498691

[30]

PartanenJ, PuriMC, SchwartzL, et al. . Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. Development, 1996, 122(10): 3013-3021 PMID: 8898215

[31]

PuriMC, BernsteinA. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci U S A, 2003, 100(22): 12753-12758 PMCID: 240690 PMID: 14530387

[32]

PatanS. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res, 1998, 56(1): 1-21 PMID: 9683559

[33]

ArgravesWS, LarueAC, FlemingPA, et al. . VEGF signaling is required for the assembly but not the maintenance of embryonic blood vessels. Dev Dyn, 2002, 225(3): 298-304 PMID: 12412012

[34]

BatardP, SansilvestriP, ScheineckerC, et al. . The Tie receptor tyrosine kinase is expressed by human hematopoietic progenitor cells and by a subset of megakaryocytic cells. Blood, 1996, 87(6): 2212-2220 PMID: 8630381

[35]

HashiyamaM, IwamaA, OhshiroK, et al. . Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells. Blood, 1996, 87(1): 93-101 PMID: 8547681

[36]

MarronMB, SinghH, TahirTA, et al. . Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem, 2007, 282(42): 30509-30517 PMCID: 2270410 PMID: 17728252

[37]

SaharinenP, KerkelaK, EkmanN, et al. . Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol, 2005, 169(2): 239-243 PMCID: 2171878 PMID: 15851516

[38]

BachF, UddinFJ, BurkeD. Angiopoietins in malignancy. Eur J Surg Oncol, 2007, 33(1): 7-15 PMID: 16962282

[39]

LawAL, ParinotC, ChatagnonJ, et al. . Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis. J Biol Chem, 2014, 290(8): 4941-4952 PMID: 25538233

[40]

MarronMB, HughesD M, CarthyMJ, et al. . Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: potential signalling mechanisms and roles in angiogenesis. Adv Exp Med Biol, 2000, 476: 35-46 PMID: 10949653

[41]

QuCK. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Res, 2000, 10(4): 279-288 PMID: 11191350

[42]

ArmstrongE, KorhonenJ, SilvennoinenO, et al. . Expression of tie receptor tyrosine kinase in leukemia cell lines. Leukemia, 1993, 7(10): 1585-1591 PMID: 8412320

[43]

KivivuoriSM, SiitonenS, PorkkaK, et al. . Expression of vascular endothelial growth factor receptor 3 and Tie1 tyrosine kinase receptor on acute leukemia cells. Pediatr Blood Cancer, 2007, 48(4): 387-392 PMID: 16685739

[44]

VerstovsekS, KantarjianH, ManshouriT, et al. . Prognostic significance of Tie-1 protein expression in patients with early chronic phase chronic myeloid leukemia. Cancer, 2002, 94(5): 1517-1521 PMID: 11920509

[45]

QiuS, JiaY, XingH, et al. . N-Cadherin and Tie2 positive CD34(+)CD38(-)CD123(+) leukemic stem cell populations can develop acute myeloid leukemia more effectively in NOD/SCID mice. Leuk Res, 2014, 38(5): 632-637 PMID: 24703771

[46]

SalvenP, JoensuuH, HeikkilaP, et al. . Endothelial Tie growth factor receptor provides antigenic marker for assessment of breast cancer angiogenesis. Br J Cancer, 1996, 74(1): 69-72 PMCID: 2074623 PMID: 8679461

[47]

ItoY, YoshidaH, UrunoT, et al. . Tie-1 tyrosine kinase expression in human thyroid neoplasms. Histopathology, 2004, 44(4): 318-322 PMID: 15049896

[48]

BuehlerD, RushP, HasensteinJR, et al. . Expression of angiopoietin-TIE system components in angiosarcoma. Mod Pathol, 2013, 26(8): 1032-1040 PMCID: 3706492 PMID: 23558570

[49]

ReesKA, SinghH, BrindleNP. The receptor tyrosine kinase Tie1 is expressed and activated in epithelial tumour cell lines. Int J Oncol, 2007, 31(4): 893-897 PMID: 17786322

[50]

FukuharaS, SakoK, MinamiT, et al. . Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol, 2008, 10(5): 513-526 PMID: 18425120

[51]

FukuharaS, SakoK, NodaK, et al. . Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol, 2010, 25(3): 387-396 PMID: 20054809

[52]

GarciaA, KandelJJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol, 2012, 27(2): 151-156 PMCID: 3272301 PMID: 22207549

[53]

PotentaS, ZeisbergE, KalluriR. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer, 2008, 99(9): 1375-1379 PMCID: 2579683 PMID: 18797460

[54]

ZeisbergEM, PotentaS, XieL, et al. . Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res, 2007, 67(21): 10123-10128 PMID: 17974953

[55]

GarciaJ, SandiMJ, CordelierP, et al. . Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep, 2012, 13(5): 431-439 PMCID: 3343349 PMID: 22421998

[56]

Arthritis Res Ther, 2008, 10(4

[57]

ChanB, SukhatmeVP. Suppression of Tie-1 in endothelial cells in vitro induces a change in the genome-wide expression profile reflecting an inflammatory function. FEBS Lett, 2009, 5836): 1023-1028 PMCID: 2666009 PMID: 19236867

[58]

HanahanD, WeinbergRA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674 PMID: 21376230

[59]

KaipainenA, VlaykovaT, HatvaE, et al. . Enhanced expression of the tie receptor tyrosine kinase mesenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res, 1994, 54(24): 6571-6577 PMID: 7987857

[60]

ChanB, YuanH A, KarumanchiS, et al. . Receptor tyrosine kinase Tie-1 overexpression in endothelial cells upregulates adhesion molecules. Biochem Biophys Res Commun, 2008, 371(3): 475-479 PMID: 18448073

[61]

CheCL, ZhangYM, ZhangHH, et al. . DNA microarray reveals different pathways responding to paclitaxel and docetaxel in non-small cell lung cancer cell line. Int J Clin Exp Pathol, 2013, 6(8): 1538-1548 PMCID: 3726969 PMID: 23923072

[62]

LiK, BlumY, VermaA, et al. . A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood, 2010, 115(1): 133-139 PMCID: 2803688 PMID: 19880500

[63]

XingZ, LiD, YangL, et al. . MicroRNAs and anticancer drugs. Acta Biochim Biophys Sin (Shanghai), 2014, 46(3): 233-239

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/