Umbilical cord blood-derived mesenchymal stem cells ameliorate graft-versus-host disease following allogeneic hematopoietic stem cell transplantation through multiple immunoregulations

Qiu-ling Wu , Xiao-yun Liu , Di-min Nie , Xia-xia Zhu , Jun Fang , Yong You , Zhao-dong Zhong , Ling-hui Xia , Mei Hong

Current Medical Science ›› 2015, Vol. 35 ›› Issue (4) : 477 -484.

PDF
Current Medical Science ›› 2015, Vol. 35 ›› Issue (4) : 477 -484. DOI: 10.1007/s11596-015-1456-8
Article

Umbilical cord blood-derived mesenchymal stem cells ameliorate graft-versus-host disease following allogeneic hematopoietic stem cell transplantation through multiple immunoregulations

Author information +
History +
PDF

Abstract

Although mesenchymal stem cells (MSCs) are increasingly used to treat graft-versus-host disease (GVHD), their immune regulatory mechanism in the process is elusive. The present study aimed to investigate the curative effect of third-party umbilical cord blood-derived human MSCs (UCB-hMSCs) on GVHD patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their immune regulatory mechanism. Twenty-four refractory GVHD patients after allo-HSCT were treated with UCB-hMSCs. Immune cells including T lymphocyte subsets, NK cells, Treg cells and dendritic cells (DCs) and cytokines including interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were monitored before and after MSCs transfusion. The results showed that the symptoms of GVHD were alleviated significantly without increased relapse of primary disease and transplant-related complications after MSCs transfusion. The number of CD3+, CD3+CD4+ and CD3+CD8+ cells decreased significantly, and that of NK cells remained unchanged, whereas the number of CD4+ and CD8+ Tregs increased and reached a peak at 4 weeks; the number of mature DCs, and the levels of TNF-α and IL-17 decreased and reached a trough at 2 weeks. It was concluded that MSCs ameliorate GVHD and spare GVL effect via immunoregulations.

Keywords

graft-versus-host disease / mesenchymal stem cells / hematopoietic stem cell transplantation / immunoregulation

Cite this article

Download citation ▾
Qiu-ling Wu, Xiao-yun Liu, Di-min Nie, Xia-xia Zhu, Jun Fang, Yong You, Zhao-dong Zhong, Ling-hui Xia, Mei Hong. Umbilical cord blood-derived mesenchymal stem cells ameliorate graft-versus-host disease following allogeneic hematopoietic stem cell transplantation through multiple immunoregulations. Current Medical Science, 2015, 35(4): 477-484 DOI:10.1007/s11596-015-1456-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StroberS, SpitzerTR, LowskyR, et al. . Translational studies in hematopoietic cell transplantation: treatment of hematologic malignancies as a stepping stone to tolerance induction. Semin Immunol, 2011, 23(4): 273-281 PMCID: 3201788 PMID: 21705229

[2]

von BoninM, StolzelF, GoedeckeA, et al. . Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant, 2009, 43(3): 245-251

[3]

MaitraB, SzekelyE, GjiniK, et al. . Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant, 2004, 33(6): 597-604 PMID: 14716336

[4]

ZinockerS, WangMY, GaustadP, et al. . Mycoplasma contamination revisited: mesenchymal stromal cells harboring mycoplasma hyorhinis potently inhibit lymphocyte proliferation in vitro. PLoS One, 2011, 6(1): 16005

[5]

NautaAJ, FibbeWE. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110(10): 3499-3506 PMID: 17664353

[6]

BaronF, LechanteurC, WillemsE, et al. . Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant, 2010, 16(6): 838-847 PMID: 20109568

[7]

SatoK, OzakiK, MoriM, et al. . Mesenchymal stromal cells for graft-versus-host disease: basic aspects and clinical outcomes. J Clin Exp Hematop, 2010, 50(2): 79-89 PMID: 21123965

[8]

Kikuchi-TauraA, TaguchiA, KandaT, et al. . Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy, 2012, 14(4): 441-450 PMID: 22339605

[9]

GangEJ, HongSH, JeongJA, et al. . In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun, 2004, 321(1): 102-108 PMID: 15358221

[10]

KernS, EichlerH, StoeveJ, et al. . Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006, 24(5): 1294-1301 PMID: 16410387

[11]

MaccarioR, PodestaM, MorettaA, et al. . Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005, 90(4): 516-525 PMID: 15820948

[12]

FilipovichAH, WeisdorfD, PavleticS, et al. . National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant, 2005, 11(12): 945-956 PMID: 16338616

[13]

WengJY, DuX, GengSX, et al. . Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant, 2010, 45(12): 1732-1740 PMCID: 3035976 PMID: 20818445

[14]

ClarkFJ, GreggR, PiperK, et al. . Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood, 2004, 103(6): 2410-2416 PMID: 14604970

[15]

RuggeriL, MancusiA, CapanniM, et al. . Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood, 2007, 110(1): 433-440 PMCID: 1896125 PMID: 17371948

[16]

RuggeriL, CapanniM, UrbaniE, et al. . Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 2002, 295(5562): 2097-2100 PMID: 11896281

[17]

SavaniBN, RezvaniK, MielkeS, et al. . Factors associated with early molecular remission after T cell-depleted allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood, 2006, 107(4): 1688-1695 PMCID: 1895415 PMID: 16131570

[18]

RuggeriL, MancusiA, BurchielliE, et al. . Natural killer cell alloreactivity and haplo-identical hematopoietic transplantation. Cytotherapy, 2006, 8(6): 554-558 PMID: 17148031

[19]

VagoL, FornoB, SormaniMP, et al. . Temporal, quantitative, and functional characteristics of single-KIR-positive alloreactive natural killer cell recovery account for impaired graft-versus-leukemia activity after haploidentical hematopoietic stem cell transplantation. Blood, 2008, 112(8): 3488-3499 PMID: 18645039

[20]

RasmussonI, RingdenO, SundbergB, et al. . Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 2003, 76(8): 1208-1213 PMID: 14578755

[21]

MaloyKJ, PowrieF. Regulatory T cells in the control of immune pathology. Nat Immunol, 2001, 2(9): 816-822 PMID: 11526392

[22]

ZornE, KimHT, LeeSJ, et al. . Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood, 2005, 106(8): 2903-2911 PMCID: 1895303 PMID: 15972448

[23]

CaoT, SotoA, ZhouW, et al. . Ex vivo expanded human CD4+CD25+Foxp3+ regulatory T cells prevent lethal xenogenic graft versus host disease (GVHD). Cell Immunol, 2009, 258(1): 65-71 PMID: 19410243

[24]

EdingerM, HoffmannP, ErmannJ, et al. . CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med, 2003, 9(9): 1144-1150 PMID: 12925844

[25]

ZornE. CD4+CD25+ regulatory T cells in human hematopoietic cell transplantation. Semin Cancer Biol, 2006, 16(2): 150-159 PMID: 16431128

[26]

LuL, CantorH. Generation and regulation of CD8(+) regulatory T cells. Cell Mol Immunol, 2008, 5(6): 401-406 PMCID: 4072402 PMID: 19118505

[27]

BeresAJ, HaribhaiD, ChadwickAC, et al. . CD8+ Foxp3+ regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J Immunol, 2012, 189(1): 464-474 PMCID: 3381996 PMID: 22649199

[28]

HirotaK, DuarteJH, VeldhoenM, et al. . Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol, 2011, 12(3): 255-263 PMCID: 3040235 PMID: 21278737

[29]

KollsJK, LindenA. Interleukin-17 family members and inflammation. Immunity, 2004, 21(4): 467-476 PMID: 15485625

[30]

NurievaR, YangXO, MartinezG, et al. . Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007, 448(7152): 480-483 PMID: 17581589

[31]

ZhengY, DanilenkoDM, ValdezP, et al. . Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature, 2007, 445(7128): 648-651 PMID: 17187052

[32]

GhannamS, PeneJ, Moquet-TorcyG, et al. . Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol, 2010, 185(1): 302-312 PMID: 20511548

[33]

AwasthiA, KuchrooVK. Th17 cells: from precursors to players in inflammation and infection. Int Immunol, 2009, 21(5): 489-498 PMCID: 2675030 PMID: 19261692

[34]

HanashAM, KappelLW, YimNL, et al. . Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood, 2011, 118(2): 446-455 PMCID: 3138694 PMID: 21596854

[35]

CouturierM, LamartheeB, ArbezJ, et al. . IL-22 deficiency in donor T cells attenuates murine acute graft-versus-host disease mortality while sparing the graft-versus-leukemia effect. Leukemia, 2013, 27(7): 1527-1537 PMID: 23399894

[36]

CarrionF, NovaE, LuzP, et al. . Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett, 2011, 135(1–2): 10-16 PMID: 20888363

[37]

JiangXX, ZhangY, LiuB, et al. . Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005, 105(10): 4120-4126 PMID: 15692068

[38]

NautaAJ, KruisselbrinkAB, LurvinkE, et al. . Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol, 2006, 177(4): 2080-2087 PMID: 16887966

[39]

SpaggiariGM, MorettaL. Interactions between mesenchymal stem cells and dendritic cells. Adv Biochem Eng Biotechnol, 2013, 130: 199-208 PMID: 22869087

[40]

WangQ, SunB, WangDJ, et al. . Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol, 2008, 68(6): 607-615 PMID: 18959624

[41]

FowlerDH, GressRE. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk Lymphoma, 2000, 38: 221-234 PMID: 10830730

[42]

AbumareeM, Al-JumahM, PaceRA, et al. . Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev, 2012, 8: 375-392 PMID: 21892603

[43]

KorngoldR, MariniJC, de BacaME, et al. . Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses. Biol Blood Marrow Transplant, 2003, 9(5): 292-303 PMID: 12766879

[44]

MoadsiriA, PolchertD, GenrichK, et al. . Mesenchymal stem cells enhance xenochimerism in NK-depleted hosts. Surgery, 2006, 140(2): 315-321 PMID: 16904985

[45]

KarlssonH, SamarasingheS, BallLM, et al. . Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood, 2008, 112(3): 532-541 PMID: 18445691

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/