Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease

Chao-lin Li , Lu-jie Zhao , Xin-li Zhou , Hui-xiao Wu , Jia-jun Zhao

Current Medical Science ›› 2015, Vol. 35 ›› Issue (3) : 333 -336.

PDF
Current Medical Science ›› 2015, Vol. 35 ›› Issue (3) : 333 -336. DOI: 10.1007/s11596-015-1433-2
Article

Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease

Author information +
History +
PDF

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus (T2DM), dyslipidemia, central obesity and hypertension. Glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors were widely used to treat T2DM. These agents improve glycemic control, promote weight loss and improve lipid metabolism. Recent studies have demonstrated that the GLP-1 receptor (GLP-1R) is present and functional in human and rat hepatocytes. In this review, we present data from animal researches and human clinical studies that showed GLP-1 analogues and DPP-4 inhibitors can decrease hepatic triglyceride (TG) content and improve hepatic steatosis, although some effects could be a result of improvements in metabolic parameters. Multiple hepatocyte signal transduction pathways and mRNA from key enzymes in fatty acid metabolism appear to be activated by GLP-1 and its analogues. Thus, the data support the need for more rigorous prospective clinical trials to further investigate the potential of incretin therapies to treat patients with NAFLD.

Keywords

glucagon-like peptide-1 receptor agonists / dipeptidyl peptidase-4 / non-alcoholic fatty liver disease / insulin resistance / type 2 diabetes mellitus

Cite this article

Download citation ▾
Chao-lin Li, Lu-jie Zhao, Xin-li Zhou, Hui-xiao Wu, Jia-jun Zhao. Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease. Current Medical Science, 2015, 35(3): 333-336 DOI:10.1007/s11596-015-1433-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KimW, EganJM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev, 2008, 60(4): 470-512 PMCID: 2696340 PMID: 19074620

[2]

MacDonaldPE, El-KholyW, RiedelMJ, et al. . The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes, 2002, 51: S434-S442 PMID: 12475787

[3]

PinelliNR, HurrenKM. Efficacy and safety of long-acting glucagon-like peptide-1 receptor agonists compared with exenatide twice daily and sitagliptin in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Pharmacother, 2011, 45(7–8): 850-860 PMID: 21730278

[4]

MadsbadS, KielgastU, AsmarM, et al. . An overview of once-weekly glucagon-like peptide-1 receptor agonists-available efficacy and safety data and perspectives for the future. Diabetes Obes Metab, 2011, 13(5): 394-407 PMID: 21208359

[5]

RiddleMC, HenryRR, PoonTH, et al. . Exenatide elicits sustained glycaemic control and progressive reduction of body weight in patients with type 2 diabetes inadequately controlled by sulphonylureas with or without metformin. Diabetes Metab Res Rev, 2006, 22(6): 483-491 PMID: 16634116

[6]

BuseJB, HenryRR, HanJ, et al. . Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care, 2004, 27(11): 2628-2635 PMID: 15504997

[7]

AhrénB, FoleyJE, FerranniniE, et al. . Changes in prandial glucagon levels after a 2-year treatment with vildagliptin or glimepiride in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care, 2010, 33(4): 730-732 PMCID: 2845014 PMID: 20067974

[8]

HermanGA, BergmanA, StevensC, et al. . Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab, 2006, 91(11): 4612-4619 PMID: 16912128

[9]

ScheenAJ. DPP-4 inhibitors in the management of type 2diabetes: a critical review of head-to-head trials. Diabetes Metab, 2012, 38(2): 89-101 PMID: 22197148

[10]

DerosaG, MaffioliP. Dipeptidyl peptidase-4 inhibitors: 3 years of experience. Diabetes Technol Ther, 2012, 14(4): 350-364 PMID: 22324384

[11]

RuhlCE, EverhartJE. Epidemiology of nonalcoholic fatty liver. Clin Liver Dis, 2004, 8(3): 501-519 PMID: 15331060

[12]

VanniE, BugianesiE, KotronenA, et al. . From the metabolic syndrome to NAFLD or vice versa. Dig Liver Dis, 2010, 42(5): 320-330 PMID: 20207596

[13]

KimCH, YounossiZM. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome. Cleve Clin J Med, 2008, 75(10): 721-728 PMID: 18939388

[14]

DavisRC, CastellaniLW, HosseiniM, et al. . Early hepatic insulin resistance precedes the onset of diabetes in obese C57BLKS-db/db mice. Diabetes, 2010, 59(7): 1616-1625 PMCID: 2889760 PMID: 20393148

[15]

SungKC, KimSH. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J Clin Endocrinol Metab, 2011, 96(4): 1093-1097 PMCID: 3070249 PMID: 21252243

[16]

ChangY, RyuS, SungE, et al. . Higher concentrations of alanine aminotransferase within the reference interval predict nonalcoholic fatty liver disease. Clin Chem, 2007, 53(4): 686-692 PMID: 17272484

[17]

GuptaNA, MellsJ, DunhamRM, et al. . Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology, 2010, 51(5): 1584-1592 PMCID: 2862093 PMID: 20225248

[18]

ShenZ, LiangX, RogersCQ, et al. . Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G364-G374 PMCID: 2838513 PMID: 20007851

[19]

HouX, XuS, Maitland-ToolanKA, et al. . SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem, 2008, 283(29): 20015-20026 PMCID: 2459285 PMID: 18482975

[20]

Svegliati-BaroniG, SaccomannoS, RychlickiC, et al. . Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int, 2011, 31(9): 1285-1297 PMID: 21745271

[21]

MiyazakiM, KatoM, TanakaK, et al. . Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol Med Rep, 2012, 5(3): 729-733 PMID: 22179204

[22]

FirneiszG, VargaT, LengyelG, et al. . Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease: a novel liver disease biomarker. PLoS One, 2010, 5(8): e12226 PMCID: 2923594 PMID: 20805868

[23]

BalabanYH, KorkusuzP, SimsekH, et al. . Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol, 2007, 6(4): 242-250 PMID: 18007554

[24]

Ben-ShlomoS, ZvibelI, ShnellM, et al. . Glucagonlike peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol, 2011, 54(6): 1214-1223 PMID: 21145820

[25]

ShirakawaJ, FujiiH, OhnumaK, et al. . Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes, 2011, 60(4): 1246-1257 PMCID: 3064098 PMID: 21330637

[26]

PatelV, JoharapurkarA, DhaneshaN, et al. . Combination of omeprazole with GLP-1 agonist therapy improves insulin sensitivity and antioxidant activity in liver in type 1diabetic mice. Pharmacol Rep, 2013, 65(4): 927-936 PMID: 24145087

[27]

LeeJ, HongSW, ChaeSW, et al. . Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J. PLos One, 2012, 7(2): e31394 PMCID: 3281956 PMID: 22363635

[28]

DhaneshaN, JoharapurkarA, ShahG, et al. . Treatment with exendin-4 improves the antidiabetic efficacy and reverses hepatic steatosis in glucokinase activator treated db/db mice. Eur J Pharmacol, 2013, 714(1–3): 188-192 PMID: 23810686

[29]

HeM, SuH, GaoW, et al. . Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS One, 2010, 5(12): e14205 PMCID: 2997064 PMID: 21151924

[30]

TrevaskisJL, GriffinPS, WittmerC, et al. . Glucagon-like peptide-1 (GLP-1) receptor agonism improves metabolic, biochemical and histopathological indices of nonalcoholic steatohepatitis (NASH) in mice. Am J Physiol Gastrointest Liver Physio, 2012, 302(8): G762-G772

[31]

KawaguchiT, ItouM, TaniguchiE, et al. . Exendin-4, a glucagon-like peptide-1 receptor agonist, modulates hepatic fatty acid composition and delta-5-desaturase index in a murine model of non- alcoholic steatohepatitis. Int J Mol Med, 2014, 34(3): 782-787 PMID: 24993337

[32]

GuptaNA, KolachalaVL, JiangR, et al. . The glucagon-like peptide-1 receptor agonist exendin 4 has a protective role in ischemic injury of lean and steatotic liver by inhibiting cell death and stimulating lipolysis. Am J Pathol, 2012, 181(5): 1693-1701 PMID: 22960075

[33]

DingX, SaxenaNK, LinS, et al. . Exendin-4, a glucagon-Like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. hepatology, 2006, 43(1): 173-181 PMCID: 2925424 PMID: 16374859

[34]

PanjwaniN, MulvihillEE, LonguetC, et al. . GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE/mice. Endocrinology, 2013, 154(1): 127-139 PMID: 23183176

[35]

ZhangL, YangM, RenH, et al. . GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int, 2013, 33(5): 794-804 PMID: 23432843

[36]

MellsJE, FuPP, SharmaS, et al. . Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol, 2012, 302(2): G225-G235 PMCID: 3341115 PMID: 22038829

[37]

ParlevlietET, WangY, GeerlingJJ, et al. . GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE* 3-leiden mice. PLoS One, 2012, 7(11): e49152 PMCID: 3487842 PMID: 23133675

[38]

KlonoffDC, BuseJB, NielsenLL, et al. . Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin, 2008, 24(1): 275-286 PMID: 18053320

[39]

SathyanarayanaP, JogiM, MuthupillaiR, et al. . Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring), 2011, 19(12): 2310-2315

[40]

KennyPR, BradyDE, TorresDM, et al. . Exenatide in the treatment of diabetic patients with non-alcoholic steatohepatitis: a case series. Am J Gastroenterol, 2010, 105(12): 2707-2709 PMID: 21131943

[41]

OhkiT, IsogawaA, IwamotoM, et al. . The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. Sci World J, 2012, 2012: 496453

[42]

ArmstrongMJ, HoulihanDD, RoweIA, et al. . Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment Pharmacol Ther, 2013, 37(2): 234-242 PMID: 23163663

[43]

EguchiY, KitajimaY, HyogoH, et al. . Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolearance in Japanese patients (LEAN-J). Hepatol Res, 2015, 45(3): 269-278 PMID: 24796231

[44]

CuthbertsonDJ, IrwinA, GardnerCJ, et al. . Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-likepeptide-1 (GLP-1) receptor agonists. PLoS One, 2012, 7(12): e50117 PMCID: 3516516 PMID: 23236362

[45]

ItouM, KawaguchiT, TaniguchiE, et al. . Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: A case report. case Rep Gastroenterol, 2012, 6(2): 538-544 PMCID: 3432996 PMID: 22949894

[46]

KahalH, AboudaG, RigbyAS, et al. . Glucagon like peptide-1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and non-alcoholic fatty liver disease. Clin Endocrinol (Oxf), 2014, 81(4): 523-528

[47]

IwasakiT, YonedaM, InamoriM, et al. . Sitagliptin as a novel treatment agent for non-alcoholic Fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology, 2011, 58(112): 2103-2105 PMID: 22024083

[48]

YilmazY, YonalO, DeyneliO, et al. . Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol Belg, 2012, 75(2): 240-244 PMID: 22870790

[49]

SamsoSL, BajajM. Potential of incretin based therapies for non-alcoholic fatty liver disease. J Diabetes Complications, 2013, 27(4): 401-406

[50]

FruciB, GiulianoS, MazzaA, et al. . Nonalcoholic fatty liver: A possible new target for type 2 diabetes prevention and treatment. Int J Mol Sci, 2013, 14(11): 22933-22966 PMCID: 3856099 PMID: 24264040

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/