MicroRNA-215 is a potential prognostic marker for cervical cancer

Hua Liang , Yan Li , Ruo-yu Luo , Fu-jin Shen

Current Medical Science ›› 2014, Vol. 34 ›› Issue (2) : 207 -212.

PDF
Current Medical Science ›› 2014, Vol. 34 ›› Issue (2) : 207 -212. DOI: 10.1007/s11596-014-1260-x
Article

MicroRNA-215 is a potential prognostic marker for cervical cancer

Author information +
History +
PDF

Abstract

Recently, microRNAs (miRNAs) have been shown to be involved in multiple biological pathways that can influence tumor progression and metastasis and they can serve as prognostic biomarkers in many cancers. The present study examined the prognostic significance of miR-215 in cervical cancer. The paraffin-embedded paired cervical scrape samples and tumor tissue samples from 302 patients with stage II cervical cancer were detected for the expression of miR-215 by using qRT-PCR. A miR-215-based classifier was established by using the Cox regression model. The prognostic and predictive accuracy of this classifier was determined in both the internal testing group of 138 patients, and the external independent group of 280 patients. Moreover, cervical cancer HeLa cells overexpressing miR-215 (HeLa-miR-215) were constructed and subcutaneously injected into the nude mice to examine the effect of miR-215 on tumor growth and metastasis in vivo. The results showed that the expression level of miR-215 was significantly higher in cervical cancer tissues than in paired normal tissues (P<0.0001). When patients were classified into high- and low-risk cancer progression groups according to miR-215 level, the 5-year disease-free survival in high- and low-risk groups were 43% (95% CI: 32.1–51.6) and 67% (95% CI: 48.6–77.3) (hazard ratio [HR] 2.02, 95% CI: 1.16–3.52; P=0.013) respectively. Moreover, the expression level of miR-215 was negatively associated with survival rate in patients at TNM stage T3 (HR: 3.317; 95% CI: 1.18–5.14, P=0.017) and TNM stage T4 (HR: 3.48; 95% CI: 1.49–4.45, P=0.008). Tumor volume in nude mice injected with HeLa-miR-215 cells was significantly larger than that in mice injected with control HeLa cells. It was concluded that the expression level of miR-215 is associated with cervical tumor progression and worse survival rate, suggesting that it may serve as a potential prognostic marker to identify patients at higher risk of recurrence.

Keywords

miR-215 / microRNA / cervical cancer / prognosis

Cite this article

Download citation ▾
Hua Liang, Yan Li, Ruo-yu Luo, Fu-jin Shen. MicroRNA-215 is a potential prognostic marker for cervical cancer. Current Medical Science, 2014, 34(2): 207-212 DOI:10.1007/s11596-014-1260-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SchiffmanM, SolomonD. Clinical practice. Cervical-cancer screening with human papillomavirus and cytologic cotesting. N Engl J Med, 2013, 369(24): 2324-2331

[2]

ZhangQ, LiuD, HangC, et al.. Primary screening for breast diseases among 17618 women in Wufeng area, a region with high incidence of cervical cancer in China. J Huazhong Univ Sci Technol [Med Sci], 2012, 32(2): 252-256

[3]

ParejaR, RendonGJ, Sanz-LomanaCM, et al.. Surgical, oncological, and obstetrical outcomes after abdominal radical trachelectomy—a systematic literature review. Gynecol Oncol, 2013, 131(1): 77-82

[4]

ChmuraA, WojcieszekA, MrochemJ, et al.. Usefulness of the SCC, CEA, CYFRA 21.1, and CRP markers for the diagnosis and monitoring of cervical squamous cell carcinoma. Ginekol Pol, 2009, 80(5): 361-366

[5]

VolggerB, AspisirengilC, Genser-KrimbacherE, et al.. Prognostic significance of TPA versus SCC-Ag, CEA and neopterin in carcinoma of the uterine cervix. Cancer Lett, 2008, 262(2): 183-189

[6]

ZhangY, WangX, MaL, et al.. Clinical significance of hTERC gene amplification detection by FISH in the screening of cervical lesions. J Huazhong Univ Sci Technol [Med Sci], 2009, 29(3): 368-371

[7]

YangMH, YuJ, ChenN, et al.. Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One, 2013, 8(12): e85353

[8]

Ben GacemR, Ben AbdelkrimO, ZiadiS, et al.. Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumour Biol, 201324375250]

[9]

Gilabert-EstellesJ, Braza-BoilsA, RamonLA, et al.. Role of microRNAs in gynecological pathology. Curr Med Chem, 2012, 19(15): 2406-2413

[10]

ZhangX, MaoH, LvZ. MicroRNA role in thyroid cancer pathogenesis. Front Biosci (Landmark Ed), 2013, 18: 734-739

[11]

HuangY, ShenXJ, ZouQ, et al.. Biological functions of microRNAs: a review. J Physiol Biochem, 2011, 67(1): 129-139

[12]

YangC, HouC, ZhangH, et al.. miR-126 functions as a tumor suppressor in osteosarcoma by targeting Sox2. Int J Mol Sci, 2013, 15(1): 423-437

[13]

PennatiM, LopergoloA, ProfumoV, et al.. miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol, 2014, 87(4): 579-597

[14]

WangZ, ZhangH, ZhangP, et al.. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med Oncol, 2013, 30(2): 577

[15]

DengY, HuangZ, XuY, et al.. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett, 2014, 342(1): 27-35

[16]

GeorgesSA, BieryMC, KimSY, et al.. Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res, 2008, 68(24): 10105-10112

[17]

KaraayvazM, ZhangC, LiangS, et al.. Prognostic significance of miR-205 in endometrial cancer. PLoS One, 2012, 7(4): e35158

[18]

HintonJ, CallanR, BodineC, et al.. Potential epigenetic biomarkers for the diagnosis and prognosis of pancreatic ductal adenocarcinomas. Expert Rev Mol Diagn, 2013, 13(5): 431-443

[19]

CortinovisD, MonicaV, PietrantonioF, et al.. MicroRNAs in non-small cell lung cancer: current status and future therapeutic promises. Curr Pharm Des, 2013

[20]

TokarzP, BlasiakJ. The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta biochimica Polonica, 2012, 59(4): 467-474

[21]

KhellaHW, BakhetM, AlloG, et al.. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis, 2013, 34(10): 2231-2239

[22]

BoniV, BitarteN, CristobalI, et al.. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther, 2010, 9(8): 2265-2275

[23]

BraunCJ, ZhangX, SavelyevaI, et al.. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res, 2008, 68(24): 10094-10104

[24]

WijnhovenBP, HusseyDJ, WatsonDI, et al.. MicroRNA profiling of Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Surg, 2010, 97(6): 853-861

[25]

KaraayvazM, PalT, SongB, et al.. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer, 2011, 10(4): 340-347

[26]

DengY, HuangZ, XuY, et al.. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett, 2014, 342(1): 27-35

[27]

WalterBA, ValeraVA, PintoPA, et al.. Comprehensive microRNA profiling of prostate cancer. J Cancer, 2013, 4(5): 350-357

[28]

MarisaL, de ReyniesA, DuvalA, et al.. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med, 2013, 10(5): e1001453

[29]

KelleyRK, VenookAP. Prognostic and predictive markers in stage II colon cancer: is there a role for gene expression profiling?. Clin Colorectal Cancer, 2011, 10(2): 73-80

[30]

ZhangJX, SongW, ChenZH, et al.. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol, 2013, 14(13): 1295-1306

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/