Postcoital administration of asoprisnil inhibited embryo implantation and disturbed ultrastructure of endometrium in implantation window in mice

Xiao-li Wu , Zhi-hong Yu , Jun Qiu , Yi-hong Yang , Xiao-li Shen , Ping Su

Current Medical Science ›› 2013, Vol. 33 ›› Issue (2) : 277 -283.

PDF
Current Medical Science ›› 2013, Vol. 33 ›› Issue (2) : 277 -283. DOI: 10.1007/s11596-013-1111-1
Article

Postcoital administration of asoprisnil inhibited embryo implantation and disturbed ultrastructure of endometrium in implantation window in mice

Author information +
History +
PDF

Abstract

Asoprisnil, a member of the selective progesterone receptor modulators, exerts high progesterone receptor selectivity, endometrial targeted advantages and significant anti-implantation effect in rats. The purpose of this study was to confirm the anti-implantation effect of asoprisil, investigate the ultrastructural changes of the peri-implantation endometrium in mice and explore the effect of asoprisnil on endometrial receptivity and its targeted contraceptive proficiency. Post-coitus mice were administered with different dosages (0.2, 0.1, 0.05 mg·g−1·day−1) of asoprisnil from day 1 of pregnancy to day 3. Then 3 animals in each group were killed on day 5 of pregnancy, and uteri were collected to examine the ultrastructural changes of endometria under a transmission electron microscope (TEM). A total of 80 animals were sacrificed on day 8 of pregnancy, and the uterine horns were examined for the presence or absence of nidation sites and the number of implantation embryos. The results showed that the implantation rate and the average number of implantation embryos in asoprisnil groups were statistically significantly decreased as compared with the vehicle control group (P<0.05). The TEM results revealed that, in vehicle control group, the tight junction between the luminal epithelia cells was short and straight, the gap was wide; the luminal epithelia cells were covered with plenty of short, clavate and neatly arranged microvilli; the endometril stromal cells were large with plenty of cytoplasm, and showed significant decidual change; there was more than one nucleus in stromal cells, and the karyotheca was integrity. In low dosage and high dosage asoprisnil groups, the tight junction was longer and more curve than in the vehicle control group; microvilli were uneven and asymmetrically distributed in luminal epithelia; the stromal cells were small and the decidual change was not significant; there were karyopyknosis and karyolysis in stromal cells; there were abnormal thick-wall vessels in the endometrium. It was suggested that asoprisnil changed the ultrastructure of the endometrium in implantation window, disturbed the endometrial receptivity and finally resulted in embryo implantation failure.

Keywords

Asoprisnil / anti-implantation / tight junction

Cite this article

Download citation ▾
Xiao-li Wu, Zhi-hong Yu, Jun Qiu, Yi-hong Yang, Xiao-li Shen, Ping Su. Postcoital administration of asoprisnil inhibited embryo implantation and disturbed ultrastructure of endometrium in implantation window in mice. Current Medical Science, 2013, 33(2): 277-283 DOI:10.1007/s11596-013-1111-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChwaliszK, PerezMC, DemannoD, et al.. Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis. Endocr Rev, 2005, 26(3): 423-438

[2]

CsapoA. Progesterone block. Am J Anat, 1956, 98(2): 273-291

[3]

PhilibertD, DeraedtR, TeutschG. . RU38486: an original multifaceted antihormone in vivo, 1981

[4]

BenagianoG, BastianelliC, FarrisM. Selective progesterone receptor modulators 1: use during pregnancy. Expert Opin Pharmacother, 2008, 9(14): 2459-2472

[5]

Chabbert-BuffetN, MeduriG, BouchardP, et al.. Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update, 2005, 11(3): 293-307

[6]

OliveDL. Role of progesterone antagonists and new selective progesterone receptor modulators in reproductive health. Obstet Gynecol Surv, 2002, 57(11Suppl4): S55-S63

[7]

SchubertG, ElgerW, KaufmannG, et al.. Discovery, chemistry, and reproductive pharmacology of Asoprisnil and related 11beta-benzaldoxime substituted selective progesterone receptor modulators (SPRMs). Semin Reprod Med, 2005, 23(1): 58-73

[8]

ElgerW, BartleyJ, SchneiderB, et al.. Endocrine pharmacological characterization of progesterone antagonists and progesterone receptor modulators with respect to PR-agonistic and antagonistic activity. Steroids, 2000, 65(10–11): 713-723

[9]

ChwaliszK, Mattia-GoldbergC, LeeM, et al.. Treatment of endometriosis with the novel selective progesterone receptor modulator (SPRM) Asoprisnil. Fertility and Sterility, 2004, 822: S83-S84

[10]

StovallDW, MikdachiHE. Treatment of symptomatic uterine leiomyomas with selective progesterone receptor modulators. Gynecol, 2011, 6(6): 579-582

[11]

WilliamsAR, CritchleyHO, OseiJ, et al.. The effects of the selective progesterone receptor modulator Asoprisnil on the morphology of uterine tissues after 3 months treatment in patients with symptomatic uterine leiomyomata. Hum Reprod, 2007, 22(6): 1696-1704

[12]

DeMannoD, ElgerW, GargR, et al.. Asoprisnil (J867): a selective progesterone receptor modulator for gynecological therapy. Steroids, 2003, 68(10–13): 1019-1032

[13]

ChwaliszK, ElgerW, SticklerT, et al.. The effects of 1-month administration of Asoprisnil (J867), a selective progesterone receptor modulator, in healthy premenopausal women. Hum Reprod, 2005, 20(4): 1090-1099

[14]

BrennerRM, SlaydenOD, GargRC, et al.. Asoprisnil suppresses endometrial proliferation in cynomolgus macaques. J Soc Gynecol Invest, 2005, 12S(2): 208A-209A

[15]

ChwaliszK, BrennerRM, FuhrmannUU, et al.. Antiproliferative effects of progesterone antagonists and progesterone receptor modulators on the endometrium. Steroids, 2000, 65(10–11): 741-751

[16]

SlaydenOD, ChwaliszK, BrennerRM. Reversible suppression of menstruation in normal women irrespective of the effect on ovulation with the novel selective progesterone receptor. Human Reproduction, 2001, 16(8): 1562-1574

[17]

MurphyCR, ShawTJ. Plasma membrane transformation: a common response of uterine epithelial cells during the peri-implantation period. Cell Biol Int, 1994, 18(12): 1115-1128

[18]

PsychoyosA. Uterine receptivity for nidation. Ann NY Acad Sci, 198636-42

[19]

PsychoyosA. Hormonal control of uterine receptivity for nidation. J Reprod Fertil Suppl, 197617-28

[20]

PsychoyosA. Hormonal control of ovoimplantation. Vitam Horm, 1973, 31: 201-256

[21]

MurphyAA, KettelLM, MoralesAJ, et al.. Endometrial effects of long-term low-dose administration of RU486. Fertil Steril, 1995, 63(4): 761-766

[22]

NikasG. Endometrial receptivity: changes in cell-surface morphology. Semin Reprod Med, 2000, 18(3): 229-235

[23]

NikasG. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod, 1999, 14Suppl2: 99-106

[24]

MeseguerM, AplinJ D, Caballero-CampoP, et al.. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod, 2001, 64(2): 590-601

[25]

GhaemiSR, SalehniaM, ValojerdiMR. The effect of progesterone and exogenous gonadotropin on preimplantation mouse embryo development and implantation. Exp Anim, 2008, 57(1): 27-34

[26]

LesseyBA. Two pathways of progesterone action in the human endometrium: implications for implantation and contraception. Steroids, 2003, 68(10–13): 809-815

[27]

MurphyCR. Junctional barrier complexes undergo major alterations during the plasma membrane transformation of uterine epithelial cells. Hum Reprod, 2000, 15(Suppl3): 182-188

[28]

DenkerHW, ThieM. The regulatory function of the uterine epithelium for trophoblast attachment: experimental approaches. Ital J Anat Embryol, 2001, 106(2Suppl2): 291-306

[29]

BuckVU, WindofferR, LeubeRE, et al.. Redistribution of adhering junctions in human endometrial epithelial cells during the implantation window of the menstrual cycle. Histochem Cell Biol, 2012, 137(6): 777-790

[30]

EndersAC, HendrickxAG, SchlafkeS. Implantation in the rhesus monkey: initial penetration of endometrium. Am J Anat, 1983, 167(3): 275-298

[31]

SatterfieldMC, DunlapKA, HayashiK, et al.. Tight and adherens junctions in the ovine uterus: differential regulation by pregnancy and progesterone. Endocrinology, 2007, 148(8): 3922-3931

[32]

BellS. Decidualization: regional differentiation and associated function. Oxf Rev Biol, 1983220-271

[33]

TurnerHE, WassJA. Are markers of proliferation valuable in the histological assessment of pituitary tumours?. Pituitary, 1999, 1(3–4): 147-151

[34]

Correia-Da-SilvaG, BellSC, PringleJH, et al.. Patterns of uterine cellular proliferation and apoptosis in the implantation site of the rat during pregnancy. Placenta, 2004, 25(6): 538-547

[35]

LydonJP, DemayoFJ, FunkCR, et al.. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev, 1995, 9(18): 2266-2278

[36]

HuangDM, HuangGY, LuFE. Effect of Bushenyiqihexue recipe on the expression of endometrial pinopodes in blastocyst implantation dysfunctional mice. Zhonghua Fu Chan Ke Za Zhi (Chinese), 2004, 39(4): 230-233

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/