Role of neuropeptide Y and peroxisome proliferator-activated receptor γ coactivator-1α in stress cardiomyopathy

Sunnassee Ananda , Yunyun Wang , Shaohua Zhu , Rongshuai Wang , Xiaowei Zhou , Luo Zhuo , Tingyi Sun , Liang Ren , Qian Liu , Hongmei Dong , Yan Liu , Liang Liu

Current Medical Science ›› 2012, Vol. 32 ›› Issue (6) : 823 -828.

PDF
Current Medical Science ›› 2012, Vol. 32 ›› Issue (6) : 823 -828. DOI: 10.1007/s11596-012-1041-3
Article

Role of neuropeptide Y and peroxisome proliferator-activated receptor γ coactivator-1α in stress cardiomyopathy

Author information +
History +
PDF

Abstract

Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage electric foot shock for about 1 h at 10 s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress cardiomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.

Keywords

stress cardiomyopathy / peroxisome proliferator-activated receptor γ coactivator-1alpha / neuropeptide Y / sudden death / forensic pathology

Cite this article

Download citation ▾
Sunnassee Ananda, Yunyun Wang, Shaohua Zhu, Rongshuai Wang, Xiaowei Zhou, Luo Zhuo, Tingyi Sun, Liang Ren, Qian Liu, Hongmei Dong, Yan Liu, Liang Liu. Role of neuropeptide Y and peroxisome proliferator-activated receptor γ coactivator-1α in stress cardiomyopathy. Current Medical Science, 2012, 32(6): 823-828 DOI:10.1007/s11596-012-1041-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CebelinM.S., HirschC.S.. Human stress cardiomyopathy. Myocardial lesions in victims of homicidal assaults without internal injuries. Hum Pathol, 1980, 11(2): 123-132

[2]

MacoveiL., CoadăG., ConstantinescuV., et al.. Takotsubo cardiomyopathy. Rev Med Chir Soc Med Nat Iasi, 2012, 116(1): 139-144

[3]

KawaiS., SuzukiH., YamaguchiH., et al.. Ampulla cardiomyopathy (“takotsubo” cardiomyopathy) reversible left ventricular dysfunction with ST segment elevation. Jpn Circ J, 2000, 64(2): 156-159

[4]

BybeeK.A., KaraT., PrasadA., et al.. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-elevation myocardial infarction. Ann intern Med, 2004, 141(11): 858-865

[5]

CreaF., LanzaG.A.. Angina pectoris and normal coronary arteries: cardiac syndrome X. Heart, 2004, 90(4): 457-463

[6]

BugiardiniR., BadimonL., CollinsP., et al.. Angina, “Normal” Coronary Angiography, and Vascular Dysfunction: Risk Assessment Strategies. PLoS Med, 2007, 4(2): e12

[7]

WittsteinI.S.. Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning?. Cell Mol Neurobiol, 2012, 32(5): 847-857

[8]

LanzaG.A., AndreottiF., SestitoA., et al.. Platelet aggregability in cardiac syndrome X. Eur Heart J, 2001, 22(20): 1924-1930

[9]

RajuH., AlbergC., SagooG.S., et al.. Inherited cardiomyopathies. BMJ, 2011, 21(343): 1106-1110

[10]

BreuerM.E., WillemsP.H., RusselF.G., et al.. Modeling mitochondrial dysfunctions in the brain: from mice to men. J Inherit Metab Dis, 2012, 35(2): 193-210

[11]

García-GiménezJ.L., GimenoA., Gonzalez-CaboP., et al.. Differential expression of PGC-1α and metabolic sensors suggest age-dependent induction of mitochondrial biogenesis in Friedreich ataxia fibroblasts. PLoS One, 2011, 6(6): e20666

[12]

MacarioA.J., Conway de MacarioE.. Sick chaperones, cellular stress, and disease. N Engl Med, 2005, 353(14): 1489-1501

[13]

SalomonP., HalawaB.. Levels of neuropeptide Y and thromboxane B2 in patients with variant angina. Pol Arch Med Wewn, 1998, 100(4): 313-320

[14]

LeoneT.C., LehmanJ.J., FinckB.N., et al.. PGC-1a-deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol, 2005, 3(4): e101

[15]

KellyD.P., ScarpullaR.C.. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev, 2004, 18(4): 357-368

[16]

PuigserverP., WuZ., ParkC.W., et al.. A cold inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6): 829-839

[17]

LehmanJ.J., BargerP.M., KovacsA., et al.. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest, 2000, 106(7): 847-856

[18]

RussellL.K., MansfieldC.M., LehmanJ.J., et al.. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferators-activated receptor-γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage dependent manner. Circ Res, 2004, 94(4): 525-533

[19]

St-Pierre, LinJ.D., KraussS., et al.. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1α and PGC-1β) in muscle cells. J Biol Chem, 2003, 278(29): 26597-26603

[20]

HerzigS., LongF., JhalaU.S., et al.. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 2001, 413(6852): 179-183

[21]

RheeJ., InoueY., YoonJ.C., et al.. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA, 2003, 100(7): 4012-4017

[22]

AllenJ.M., AdrianT.E., TatemotoK., et al.. Two novel related peptides, neuropeptide Y (NPY) and peptide YY (PYY) inhibit the contraction of the electrically stimulated mouse vas deferens. Neropeptides, 1982, 3(2): 71-77

[23]

GuJ., PolakJ.M., AllenJ.M., et al.. High concentrations of a novel peptide, neuropeptide Y, in the innervation of mouse and rat heart. J Histochem Cytochem, 1984, 32(5): 467-472

[24]

RudehillA., SolleviA., Franco-CerecedaA., et al.. Neuropeptide Y (NPY) and the pig heart: release and coronary vasoconstrictor effects. Peptides, 1986, 7(5): 821-826

[25]

GullestadL., PernowJ., BjuröT., et al.. Differential effects of metoprolol and atenolol to neuropeptide Y blockade in coronary artery disease. Scand Cardiovasc J, 2012, 46(1): 23-31

[26]

MorganC.A.3rd, WangS., SouthwickS.M., et al.. Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biol Psychiatry, 2000, 47(10): 902-909

[27]

Gómez-AmbrosiJ., FrühbeckG., MartínezJ.A.. Rapid in vivo PGC-1 mRNA upregulation in brown adipose tissue of Wistar rats by a β-(3)-adrenergic agonist and lack of effect of leptin. Mol Cell Endocrinol, 2001, 176(1–2): 85-90

[28]

FinckB.N., KellyD.P.. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α) regulatory cascade in cardiac physiology and disease. Circulation, 2007, 115(19): 2540-2548

[29]

RussellL.K., FinckB.N., KellyD.P.. Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol, 2005, 38(1): 81-91

[30]

Ventura-ClapierR., GarnierA., VekslerV.. Energy metabolism in heart failure. J Physiol, 2004, 555pt1: 1-13

[31]

van BilsenM., van NieuwenhovenF.A., van der VusseG.J.. Metabolic remodelling of the failing heart: beneficial or detrimental?. Cardiovasc Res, 2009, 81(3): 420-428

[32]

CoccoG., ChuD.. Stress-induced cardiomyopathy: A review. Eur J Intern Med, 2007, 18(5): 369-379

[33]

SebastianiM., GiordanoC., NedianiC., et al.. Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol, 2007, 50(14): 1362-1369

[34]

StoneyC.M., HughesJ.W.. Catecholamine stress responses in arterialized blood. Psychophysiology, 2001, 38(3): 590-593

[35]

ZhangG.X., KimuraS., NishiyamaA., et al.. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res, 2005, 65(1): 230-238

[36]

ChalkiasA., XanthosT.. Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev, 2012, 17(1): 117-128

[37]

ArnoldG., KaiserC., FischerR.. Myofibrillar degeneration—a common type of myocardial lesion and its selective identification by a modified luxol fast blue stain. Pathol Res Pract, 1985, 180(4): 405-415

[38]

DuflouJ., NickolsG., WaiteP., et al.. Artefactual contraction band necrosis of the myocardium in fatal air crashes. Aviat Space Environ Med, 2006, 779: 944-999

[39]

SchröderR., SchoserB.. Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol, 2009, 19(3): 483-492

[40]

MachackovaJ., BartaJ., DhallaN.S.. Myofibrillar remodelling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol, 2006, 22(11): 953-968

[41]

MurakamiT., TanakaN.. The physiological significance of coronary aneurysms in Kawasaki disease. EuroIntervention, 2011, 7(8): 944-947

[42]

WittsteinI.S., ThiemannD.R., LimaJ.A., et al.. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med, 2005, 352(6): 539-548

[43]

SilvaA.P., XapelliS., GrouzmannE., et al.. The putative neuroprotective role of neuropeptide Y in the central nervous system. Curr Drug Targets CNS Neurol Disord, 2005, 4(4): 331-347

[44]

García-VillalónA.L., PadillaJ., FernándezN., et al.. Effect of neuropeptide Y on the sympathetic contraction of the rabbit central ear artery during cooling. Pflugers Arch, 2000, 440(4): 548-555

[45]

WarnerM.R., SenanayakeP.D., FerrarioC.M., et al.. Sympathetic stimulation-evoked overflow of norepinephrine and neuropeptide Y from the heart. Circ Res, 1991, 69(2): 455-465

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/