Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells

Yatong Chen , Jiahui Zhao , Yong Luo , Yongxing Wang , Nengbao Wei , Yongguang Jiang

Current Medical Science ›› 2012, Vol. 32 ›› Issue (5) : 697 -703.

PDF
Current Medical Science ›› 2012, Vol. 32 ›› Issue (5) : 697 -703. DOI: 10.1007/s11596-012-1020-8
Article

Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells

Author information +
History +
PDF

Abstract

It has been widely verified by various sorting methods that cancer stem cells (CSCs) exist in different types of tumor cells or tissues. However, due to lack of specific stem cell surface markers, CSCs are very difficult to be separated from some cancer cells, which becomes the key barrier of functional studies of CSCs. The sorting method by side population cells (SP) lays a solid foundation for in-depth and comprehensive study of CSCs. To identify the existence of SP in prostate cancer cell lines, we applied flow cytometry sorting by SP to cultures of prostate cancer cell lines (TSU, LnCap, and PC-3), and the cancer stem-like characteristics of SP were verified through experiments in vitro and in vivo. The proportion of SP in TSU cells was calculated to be 1.60%±0.40%

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left( {\bar x \pm s} \right)$$\end{document}
, and that in PC-3 and LnCap cells was calculated to be 0.80%±0.05% and 0.60%±0.20%, respectively. The colony formation assay demonstrated that the colony formation rate of SP to non-SP sorted from TSU via flow cytometry was 0.495±0.038 to 0.177±0.029 in 500 cells, 0.505±0.026 to 0.169±0.024 in 250 cells, and 0.088±0.016 to 0.043±0.012 in 125 cells respectively. In the in vivo experiments, tumors were observed in all the mice on the 10th day after injecting 50 000 cells subcutaneously in SP group, whereas when 5×106 cells were injected in non-SP group, tumors were developed in only 4 out of 8 mice until the 3rd week before the end of the experiment. Our results revealed that prostate cancer cells contain a small subset of cells, called SP, possessing much greater capacity of colony formation and tumorigenic potential than non-SP. These suggest that SP in prostate cancer cells may play a key role in the self-renewal and proliferation, and have the characteristics of cancer stem-like cells. Dissecting these features will provide a new understanding of the function of prostate CSCs in tumorigenicity and transformation.

Keywords

cancer stem cells / side population cells / prostate cancer

Cite this article

Download citation ▾
Yatong Chen, Jiahui Zhao, Yong Luo, Yongxing Wang, Nengbao Wei, Yongguang Jiang. Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells. Current Medical Science, 2012, 32(5): 697-703 DOI:10.1007/s11596-012-1020-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuptaS., TakebeN., LoRussoP.. Targeting the Hedgehog pathway in cancer. Ther Adv Med Oncol, 2010, 2(4): 237-250

[2]

SunJ.G., LiaoR.X., QiuJ., et al.. Microarray-based analysis of microRNA expression in breast cancer stem cells. J Exp Clin Cancer Res, 2010, 29(174): 1-8

[3]

LiR., QianN., TaoK., et al.. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res, 2010, 29(1): 169

[4]

OishiN., WangX.W.. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci, 2011, 7(5): 517-535

[5]

YangJ.P., LiuY., ZhongW., et al.. Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma. Chin Med J (Engl), 2011, 124(7): 1055-1060

[6]

ScaldaferriM.L., FeraS., GrisantiL., et al.. Identification of side population cells in mouse primordial germ cells and prenatal testis. Int J Dev Biol, 2011, 55(2): 209-214

[7]

TakaoT., AsanomaK., KatoK., et al.. Isolation and characterization of human trophoblast side-population (SP) cells in primary villous cytotrophoblasts and HTR-8/SVneo cell line. PLoS ONE, 2011, 6(7): 1-14

[8]

GoodellM.A., BroseK., ParadisG., et al.. Isolation and functional properfies of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996, 183(4): 1797-1806

[9]

JemalA., SiegelR., WardE., et al.. Cancer statistics. CA Cancer J Clin, 2009, 59: 225-249

[10]

DehmS.M., TindallD.J.. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol, 2007, 21(12): 2855-2863

[11]

ChenC.D., WelsbieD.S., TranC., et al.. Molecular determinants of resistance to antiandrogen therapy. Nat Med, 2004, 10(1): 33-39

[12]

Maugeri-SaccàM., De MariaR.. Translating basic research in cancer patient care. Ann Ist Super Sanita, 2011, 47(1): 64-71

[13]

VisvaderJ.E., LindemanG.J.. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008, 8(10): 755-768

[14]

DalerbaP., DyllaS.J., ParkI.K., et al.. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 2007, 104(24): 10 158-10 163

[15]

KusumbeA.P., MaliA.M., BapatS.A.. CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells, 2009, 27(3): 498-508

[16]

JiangF., QiuQ., KhannaA., et al.. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res, 2009, 7(3): 330-338

[17]

FrielA.M., SergentP.A., PatnaudeC., et al.. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle, 2008, 7(2): 242-249

[18]

MouthonM.A., FouchetP., MathieuC., et al.. Neural stem cells from mouse forebrain are contained in a population distinct from the ‘side population’. J Neurochem, 2006, 99(3): 807-817

[19]

GoodellM.A., RosenzweigM., KimH., et al.. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med, 1997, 3(12): 1337-1345

[20]

ShimanoK., SatakeM., OkayaA., et al.. Hepatic oval cells have the side population phenotype defined by expression of ATP binding cassette transporter ABCG2/BCRP1. Am J Pathol, 2003, 163(1): 3-9

[21]

SummerR., KottonD.N., SunX., et al.. Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol, 2003, 285(1): L97-104

[22]

LarderetG., FortunelN.O., VaigotP., et al.. Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells, 2006, 24(4): 965-974

[23]

AlviA.J., ClaytonH., JoshiC., et al.. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 2003, 5(1): R1-824

[24]

BapaiS.A., MaliA.M., KoppikarC.B., et al.. Stem and progenitor-lik e cells contribute to the a ggressive behave of human epithelial ovarian cancer. Cancer Res, 2005, 65(8): 3025-3029

[25]

WangJ., GuoL.P., ChenL.Z., et al.. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res, 2007, 67(8): 3716-3724

[26]

SinghS.K., HawkinsC., ClarkeI.D., et al.. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015): 396-401

[27]

BleauA.M., HuseJ.T., EricC., et al.. The ABCG2 resistance network of glioblastoma. Cell Cycle, 2009, 8(18): 2936-2944

[28]

FukayaR., OhtaS., YamaguchiM., et al.. Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Lett, 2010, 291(2): 150-157

[29]

YangM., YanM., ZhangR., et al.. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci, 2011, 102(10): 1774-1781

[30]

MuraseM., KanoM., TsukaharaT., et al.. Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer, 2009, 101(8): 1425-1432

[31]

WangB., YangH., HuangY.Z., et al.. Biologic characteristics of the side population of human small cell lung cancer cell line H446. Chin J Cancer, 2010, 29(3): 254-260

[32]

SalcidoC.D., LarochelleA., TaylorB.J., et al.. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer, 2010, 102(11): 1636-1644

[33]

HarrisM.A., YangH., LowB.E., et al.. Cancer stem cells are enriched in the side-population cells in a mouse model of glioma. Cancer Res, 2008, 68(24): 10051-10059

[34]

KongQ.L., HuL.J., CaoJ.Y., et al.. Epstein-barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog, 2010, 6(6): 1371

[35]

KubotaH., AvarbockM.R., BrinsterR.L.. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003, 100(11): 6487-6492

[36]

ShinoharaT., IshiiK., Kanatsu-ShinoharaM.. Unstable side population phenotype of mouse spermatogonial stem cells in vitro. J Reprod Dev, 2011, 57(2): 288-295

[37]

PearceD.J., RidlerC.M., SimpsonC., et al.. Multiparameter analysis of murine bone marrow side population cells. Blood, 2004, 103(7): 2541-2546

[38]

MoritaY., EmaH., YamazakiS., et al.. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood, 2006, 108(8): 2850-2856

[39]

PlatetaN., MayolbJ.F., BergerF., et al.. Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Letters, 2007, 581(7): 1435-1440

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/