Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2

Hua Liao , Junrong Gong , Wenjuan Zhang , Xiaomei Guo

Current Medical Science ›› 2012, Vol. 32 ›› Issue (1) : 31 -35.

PDF
Current Medical Science ›› 2012, Vol. 32 ›› Issue (1) : 31 -35. DOI: 10.1007/s11596-012-0005-y
Article

Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2

Author information +
History +
PDF

Abstract

Angiotensin II (ANGII) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs). In our study, we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGII by cell counting and methyl thiazolyl tetrazolium (MTT) assay, and detected the expression of mitofusin 2 (Mfn2), a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway protein by Western blotting. ANGII at a concentration of 10−6 mol/L significantly stimulated VSMCs proliferation, down-regulated the expression of Mfn2 and up-regulated the expression of Raf and ERK1/2. Valsartan inhibited such effects of ANGII at concentrations of 10−5 and 10−6 mol/L, but not at 10−7 mol/L. Valsartan had no significant effect on the proliferation of untreated VSMCs. These results suggest that valsartan inhibits ANGII-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.

Keywords

valsartan / angiotensin II / vascular smooth muscle cells / proliferation / mitofusin 2

Cite this article

Download citation ▾
Hua Liao, Junrong Gong, Wenjuan Zhang, Xiaomei Guo. Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2. Current Medical Science, 2012, 32(1): 31-35 DOI:10.1007/s11596-012-0005-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Braun-DullaeusR.C., MannM.J., DzauV.J.. Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation, 1998, 98(1): 82-89

[2]

RogerV.L., GoA.S., Lloyd-JonesD.M., et al.. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation, 2011, 123(4): e18-e209

[3]

RossR.. Atherosclerosis is an inflammatory disease. Am Heart J, 1999, 138(5Pt2): S419-S420

[4]

DzauV.J., Braun-DullaeusR.C., SeddingD.G.. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med, 2002, 8(11): 1249-1256

[5]

AndrésV., CastroC.. Antiproliferative strategies for the treatment of vascular proliferative disease. Curr Vasc Pharmacol, 2003, 1(1): 85-98

[6]

CharronT., NiliN., StraussB.H.. The cell cycle: a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol, 2006, 22(SupplB): 41B-55

[7]

BrasierA.R., RecinosA.3rd, EledrisiM.S.. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol, 2002, 22(8): 1257-1266

[8]

VaughanD.E.. Angiotensin and vascular fibrinolytic balance. Am J Hypertens, 2002, 15(1Pt2): 3S-8S

[9]

ChenK.H., GuoX., MaD., et al.. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol, 2004, 6(9): 872-883

[10]

EguchiS., MatsumotoT., MotleyE.D., et al.. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. J Biol Chem, 1996, 271(24): 14 169-14 175

[11]

ChenK.H., WangF., ZhangJ., et al.. Cloning and expression of a novel partial cDNA related to hypertension. Chin Med J (Engl), 1998, 111(4): 383-384

[12]

BachD., PichS., SorianoF.X., et al.. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem, 2003, 278(19): 17 190-17 197

[13]

GuoX.M., ChenK.H., GuoY.H., et al.. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res, 2007, 101(11): 1113-1122

[14]

BlackH.R., BaileyJ., ZappeD., et al.. Valsartan: more than a decade of experience. Drugs, 2009, 69(17): 2393-2414

[15]

MueckA.O., SeegerH., LippertT.H.. Valsartan inhibits angiotensin II-stimulated proliferation of smooth muscle cells from human coronary artery. Int J Clin Pharmacol Ther, 1999, 37(7): 365-366

[16]

KohnoM., OhmoriK., NozakiS., et al.. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells. Hypertens Res, 2000, 23(6): 677-681

[17]

ChienK.R., HoshijimaM.. Unravelling Ras signals in cardiovascular disease. Nat Cell Biol, 2004, 6(9): 807-808

[18]

WuL., LiZ., ZhangY., et al.. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther, 2008, 7(1): 222-232

[19]

ZhouW., ChenK.H., CaoW., et al.. Mutation of the protein kinase A phosphorylation site influences the anti-prolifera tive activity of mitofusin 2. Atherosclerosis, 2010, 211(1): 216-223

[20]

BokemeyerD., LindemannM., KramerH.J.. Regulation of mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle cells. Hypertension, 1998, 32(4): 661-667

[21]

KeenanS.M., BelloneC., BaldassareJ.J.. Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem, 2001, 276(25): 22 404-22 409

[22]

TouyzR.M., SchiffrinE.L.. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev, 2000, 52(4): 639-672

[23]

OhtsuH., SuzukiH., NakashimaH., et al.. Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension, 2006, 48(4): 534-540

[24]

EguchiS., NumaguchiK., IwasakiH., et al.. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem, 1998, 273(15): 8890-8896

[25]

FengT.C., YingW.Y., HuaR.J., et al.. Effect of valsartan and captopril in rabbit carotid injury. Possible involvement of bradykinin in the antiproliferative action of the renin-angiotensin blockade. J Renin Angiotensin Aldosterone Syst, 2001, 2(1): 19-24

[26]

YamamotoT., SataM., FukudaD., et al.. The angiotensin II type 1 receptor blocker valsartan attenuates graft vasculopathy. Basic Res Cardiol, 2005, 100(1): 84-91

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/