Effects and mechanism of irbesartan on tubulointerstitial fibrosis in 5/6 nephrectomized rats

Gang Zhao , Hong Zhao , Ling Tu , Xizhen Xu , Changlong Zheng , Meihua Jiang , Peihua Wang , Daowen Wang

Current Medical Science ›› 2010, Vol. 30 ›› Issue (1) : 48 -54.

PDF
Current Medical Science ›› 2010, Vol. 30 ›› Issue (1) : 48 -54. DOI: 10.1007/s11596-010-0109-1
Article

Effects and mechanism of irbesartan on tubulointerstitial fibrosis in 5/6 nephrectomized rats

Author information +
History +
PDF

Abstract

Tubulointerstitial fibrosis (TIF) is a common pathological feature of end-stage kidney disease. Previous studies showed that upregulation of TGFβ1 notably contributed to the chronic renal injury and irbesartan halted the development of TIF in rats with 5/6 renal mass reduction. This study was to investigate the effects of irbesartan on chronic TIF and the mechanism involved TGFβ1 in the rodent model of chronic renal failure involving 5/6 nephrectomy. The results showed that irbesartan significantly attenuated the rise in blood pressure and tubulointerstitial injury observed in this model. Masson staining of the renal tissue revealed that there appeared severe renal tubule atrophy and fibrosis in operation group, but the lesion was attenuated mostly in irbesartan-treated group. Immunohistochemistry showed that irbesartan treatment apparently decreased the protein expression of TGFβ1 which was up-regulated in operation groups. Western blot showed that irbesartan treatment down-regulated the expression of TGFβ1, phosphorylated smad2 (p-smad2), AT1R and phosphorylated p38 (p-p38) MAPK, but significantly up-regulated the protein expression of smad6 as compared with operation group. These findings suggest that irbesartan attenuates hypertension and reduces the development of TIF in rats with 5/6 renal mass reduction via changes in the expression of these proteins at least including smad6, TGF-β1, p-smad2, AT1 and p-p38 MAPK.

Keywords

chronic tubulointerstitial fibrosis / irbesartan / 5/6 nephrectomy / signaling pathway

Cite this article

Download citation ▾
Gang Zhao, Hong Zhao, Ling Tu, Xizhen Xu, Changlong Zheng, Meihua Jiang, Peihua Wang, Daowen Wang. Effects and mechanism of irbesartan on tubulointerstitial fibrosis in 5/6 nephrectomized rats. Current Medical Science, 2010, 30(1): 48-54 DOI:10.1007/s11596-010-0109-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangJ., LiuY.. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001, 159(4): 1465-1475

[2]

HirschbergR.. Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol, 2005, 16(1): 9-11

[3]

EddyA.A.. Molecular basis of renal fibrosis. Pediatr Nephrol, 2000, 15(3–4): 290-301

[4]

LiuY.. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int, 2006, 69(2): 213-217

[5]

CarvajalG., Rodríguez-VitaJ., Rodrigues-DíezR., et al.. Angiotensin II activates the smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int, 2008, 74(5): 585-595

[6]

LiuB.C., XiaH.L., WuJ. e. al.. Influence of irbesartan on expression of ILK and its relationship with epithelial-mesenchymal transition in mice with unilateral ureteral obstruction. Acta Pharmacol Sin, 2007, 28(11): 1810-1818

[7]

RuanX., WagnerC., ChatziantoniouC., et al.. Regulation of angiotension II receptor AT1 subtypes in renal afferent rterioles during chronic changes in sodium diet. J Clin Invet, 1997, 9(5): 1072-1081

[8]

ZhouA., YuL., LiJ., et al.. Renal protective effects of blocking the intrarenal renin-angiotensin system: angiotensin II type I receptor antagonist compared with angiotensin-converting enzyme inhibitor. Hypertens Res, 2000, 23(4): 391-397

[9]

SchmiederR.E., MartinS., LangG.E., et al.. Angiotensin blockade to reduce microvascular damage in diabetes mellitus. Dtsch Arztebl Int, 2009, 106(34–35): 556-562

[10]

CroomK.F., PloskerG.L.. Irbesartan: a review of its use in hypertension and diabetic nephropathy. Drugs, 2008, 68(11): 1543-1569

[11]

Hinojosa-LabordeC., FrohlichB.H., CowleyA.W.Jr. Whole body autoregulation in reduced renal mass hypertension. Hypertension, 1992, 20(5): 659-665

[12]

KarallieddeJ., VibertiG.. Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension and diabetes. J Hum Hypertens, 2006, 20(4): 239-253

[13]

TuL., XuX., WanH., et al.. Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther, 2008, 19(4): 318-330

[14]

AnjaneyuluM., ChopraK.. Effect of irbesartan on the antioxidant defense system and nitric oxide release in diabetic rat kidney. Am J Nephrol, 2004, 24(5): 488-496

[15]

PrietoM., Rodríguez-PeñaA., ArévaloM., et al.. Effect of the long-term treatment with trandolapril on endoglin expression in rats with experimental renal fibrosis induced by renal mass reduction. Kidney Blood Press Res, 2005, 28(1): 32-40

[16]

WolfG., RitzE.. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int, 2005, 67(3): 799-812

[17]

SekineS., NittaK., UchidaK., et al.. Possible involvement of mitogen-activated protein kinase in the angiotensin II -induced fibronectin synthesis in renal interstitial fibroblasts. Arch Biochem Biophys, 2003, 415(1): 63-68

[18]

WalshM.F., AmpasalaD.R., RishiA.K., et al.. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements. Biochim Biophys Acta, 2009, 1789(2): 88-98

[19]

TanA.R., AlexeG., ReissM.. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer?. Breast Cancer Res Treat, 2009, 115(3): 453-495

[20]

LiuI.M., SchillingS.H., KnouseK.A., et al.. TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J, 2009, 28(2): 88-98

[21]

JonesJ.A., SpinaleF.G., IkonomidisJ.S.. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res, 2009, 46(2): 119-137

[22]

FlemingY.M., FergusonG.J., SpenderL.C., et al.. TGF-beta-m-ediated activation of RhoA signaling is required for efficient (V12)HaRas and (V600E)BRAF transformation. Oncogene, 2009, 28(7): 983-993

[23]

ZhaoS., AmmanamanchiS., BrattainM., et al.. Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells. J Biol Chem, 2008, 283(17): 11 293-11 301

[24]

ZanottiS., Smerdel-RamoyaA., StadmeyerL., et al.. Activation of the ERK pathway in osteoblastic cells, role of gremlin and BMP-2. J Cell Biochem, 2008, 104(4): 1421-1426

[25]

WalshM.F., AmpasalaD.R., HatfieldJ., et al.. Transforming growth factor-beta stimulates intestinal epithelial focal adhesion kinase synthesis via Smad- and p38-dependent mechanisms. Am J Pathol, 2008, 173(2): 385-399

[26]

SchulzR., VogelT., DresselR., et al.. TGF-beta superfamily members, ActivinA and TGF-beta1, induce apoptosis in oligodendrocytes by different pathways. Cell Tissue Res, 2008, 334(3): 327-338

[27]

RamosM.F., LaméM.W., SegallH.J., et al.. Smad signaling in the rat model of monocrotaline pulmonary hypertension. Toxicol Pathol, 2008, 36(2): 311-320

[28]

QureshiH.Y., RicciG., ZafarullahM.. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta, 2008, 1783(9): 1605-1612

[29]

OwensP., BazziH., EngelkingE., et al.. Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Dev Biol, 2008, 322(1): 156-166

[30]

Rodríguez-VitaJ., Sánchez-LópezE., EstebanV., et al.. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation, 2005, 111(19): 2509-2517

[31]

Ruiz-OrtegaM., RupérezM., EstebanV., et al.. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant, 2006, 21(1): 16-20

[32]

BrennerB.M., CooperM.E., de ZeeuwD., et al.. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 2001, 345(12): 861-869

[33]

LewisE.J., HunsickerL.G., ClarkeW.R., et al.. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med, 2001, 345(12): 851-860

[34]

ParvingH.H., LehnertH., Bröchner-MortensenJ., et al.. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med, 2001, 345(12): 870-878

[35]

SecciaT.M., ManieroC., BelloniA.S., et al.. Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J Hypertens, 2008, 26(10): 2022-2029

[36]

WenzelR.R.. Renal protection in hypertensive patients: selection of antihypertensive therapy. Drugs, 2005, 65(Suppl2): S29-S39

[37]

LiS., CaoB., FengQ.H., et al.. Renal protective effect of angiotensin II receptor antagonist on growth hormone-treated nephrotic rats. Zhonghua Er Ke Za Zhi (in Chinese), 2003, 41(11): 817-821

[38]

TaalM.W., Zandi-NejadK., WeeningB., et al.. Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int, 2000, 58(4): 1664-1676

[39]

ToblliJ.E., DeRosaG., CaoG., et al.. ACE inhibitor and angiotensin type I receptor antagonist in combination reduce renal damage in obese Zucker rats. Kidney Int, 2004, 65(6): 2343-2359

[40]

MaL.J., JhaS., LingH., et al.. Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int, 2004, 65(1): 106-115

[41]

YokoiH., SugawaraA., MukoyamaM., et al.. Role of connective tissue growth factor in profibrotic action of transforming growth factor-beta: a potential target for preventing renal fibrosis. Am J Kidney Dis, 2001, 38(4Suppl1): S134-S138

[42]

MizunoS., NakamuraT.. Molecular basis for HGF-mediated regression of renal fibrosis. Nippon Rinsho, 2006, 64(Suppl2): S312-S321

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/