Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement

Yanchun Guo , Jianfei Wang , Zhongqiang Wang , Yi Yang , Ximing Wang , Qiuhong Duan

Current Medical Science ›› 2010, Vol. 30 ›› Issue (1) : 1 -7.

PDF
Current Medical Science ›› 2010, Vol. 30 ›› Issue (1) : 1 -7. DOI: 10.1007/s11596-010-0101-9
Article

Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement

Author information +
History +
PDF

Abstract

Researches have shown that melatonin is neuroprotectant in ischemia/reperfusion-mediated injury. Although melatonin is known as an effective antioxidant, the mechanism of the protection cannot be explained merely by antioxidation. This study was devoted to explore other existing mechanisms by investigating whether melatonin protects ischemia/reperfusion-injured neurons through elevating autophagy, since autophagy has been frequently suggested to play a crucial role in neuron survival. To find it out, an ischemia/reperfusion model in N2a cells was established for examinations. The results showed that autophagy was significantly enhanced in N2a cells treated with melatonin at reperfusion onset following ischemia and greatly promoted cell survival, while autophagy blockage by 3-MA led to the shortened N2a cell survival as assessed by MTT, transmission electron microscopy, and laser confocal scanning microscopy. Besides, the protein levels of LC3II and Beclin1 were remarkably increased in ischemia/reperfusion-injured N2a in the presence of melatonin, whereas the expression of p-PKB, key kinase in PI3K/PKB signaling pathway, showed a decrease when compared with untreated subjects as accessed by immunoblotting. Taken together these data suggest that autophagy is possibly one of the mechanisms underlying neuroprotection of melatonin.

Keywords

melatonin / autophagy / ischemia/reperfusion / rapamycin / 3-MA / LC3 / Beclin1 / PKB / N2a

Cite this article

Download citation ▾
Yanchun Guo, Jianfei Wang, Zhongqiang Wang, Yi Yang, Ximing Wang, Qiuhong Duan. Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. Current Medical Science, 2010, 30(1): 1-7 DOI:10.1007/s11596-010-0101-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OlivieriG., BrackC., Muller-Spahn, et al.. Mercury induces cell cytotoxicity and oxidative stress and increases β-amyloid secretion and Tau phosphorylation in SHSY’5Y neuroblastoma cells. J Neurochem, 2000, 74(1): 231-236

[2]

CheungR.T.. Cerebrovascular disease—advances in management. Hong Kong Med J, 2001, 7(1): 58-66

[3]

ChanP.H.. Role of oxidants in ischemic brain damage. Stroke, 1996, 27(6): 1124-1129

[4]

MargaillI., PlotkineM., LerouetD.. Antioxidant strategies in the treatment of stroke. Free Rad Biol Med, 2005, 39(4): 429-443

[5]

LiptonP.. Ischemic cell death in brain neurons. Physiol Rev, 1999, 79(4): 1431-1568

[6]

WarnerD.S., ShengH., Batinie-HaberleI.. Oxidants, antioxidants and the ischemic brain. J Exp Biol, 2004, 207(18): 3221-3231

[7]

Letechipía-VallejoG., López-LoezaE., Espinoza-GonzálezV., et al.. Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res, 2007, 42(2): 138-146

[8]

PeiZ., CheungR.T.. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J Pineal Res, 2004, 37(2): 85-91

[9]

WatanabeK., WakatsukiA., ShinoharaK., et al.. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res, 2004, 37(4): 276-280

[10]

LipartitiM., FranceschiniD., ZanoniR., et al.. Neuroprotective effects of melatonin. Adv Exp Med Biol, 1996, 398: 315-321

[11]

KilicE., OzdemirY.G., BolayH., et al.. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab, 1999, 19(5): 511-516

[12]

SarrafzadehA.S., ThomaleU.W., KroppenstedtS.N., et al.. Neuroprotective effect of melatonin on cortical impact injury in the rat. Acta Neurochir (Wien), 2000, 142(11): 1293-1299

[13]

DuanQ.H., WangZ.Q., LuT., et al.. Comparison of 6-hydroxylmelatonin or melatonin in protecting neurons against ischemia/reperfusion-mediated injury. J Pineal Res, 2006, 41(4): 351-357

[14]

KlionskyD.J., EmrS.D.. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497): 1717-1721

[15]

PanT., KondoS., ZhuW., et al.. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis, 2008, 32(1): 16-25

[16]

CarloniS., BuonocoreG., BalduiniW.. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis, 2008, 32(3): 329-339

[17]

BlomgrenK., ZhuC.L., HallinU., et al.. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem Biophys Res Commun, 2003, 304(3): 551-559

[18]

LoveS.. Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry, 2003, 27(2): 267-282

[19]

KimI., Rodriguez-EnriquezS., LemastersJ.J.. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys, 2007, 462(2): 245-253

[20]

BanasiakK.J., XiaY., HaddadG.G.. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobil, 2000, 62(3): 215-249

[21]

PoeggelerB., ReiterR.J., TanD.X., et al.. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res, 1993, 14(4): 151-168

[22]

CervantesM., MoraliG., Letechipia-VallejoG.. Melatonin and ischemia-reperfusion injury of the brain. J Pineal Res, 2008, 45(1): 1-7

[23]

ChanP.H.. Role of oxidants in ischemic brain damage. Stroke, 1996, 27(6): 1124-1129

[24]

ReiterR.J., TanD.X., PappollaM.A.. Melatonin relieves the neural oxidative burden that contributes to dementias. Ann N Y Acad Sci, 2004, 1035: 179-196

[25]

HarmsC., LauternschlagerM., BergkA.. Melatonin is protective in necrotic but not in caspase-dependent, free radical-independent apoptotic neuronal cell death in primary neuronal cultures. FASEB J, 2000, 14(12): 1814-1824

[26]

KabeyaY., MizushimaN., UenoT., et al.. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19(21): 5720-5728

[27]

MizushimaN.. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004, 36(12): 2491-2502

[28]

TassaA., RouxM.P., AttaixD., et al.. Class III Phosphoinositide 3-kinase-Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J, 2003, 376(Pt3): 577-586

[29]

LiJ., NiM., LeeB., et al.. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ, 2008, 15(9): 1460-1471

[30]

LiangX.H., JacksonS., SeamanM., et al.. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762): 672-676

[31]

PotterC.J., PadrazaL.G., XuT.. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol, 2002, 4(9): 658-665

[32]

ManningB.D., TeeA.R., LogsdonM.N., et al.. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell, 2002, 10(1): 151-162

[33]

InokiK., LiY., ZhuT., et al.. TSC is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol, 2002, 4(9): 648-657

[34]

ScottR.C., SchuldinerO., NeufeldT.P.. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell, 2004, 7(2): 167-178

[35]

WullschlegerS., LoewithR., HallM.N.. TOR signaling in growth and metabolism. Cell, 2006, 124(3): 471-484

[36]

LumJ.J., DeBerardinisR.J., ThompsonC.B.. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol, 2005, 6(6): 439-448

[37]

NodaT., OhsumiY.J.. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem, 1998, 273(7): 3963-3966

[38]

KabeyaY., MizushimaN., UenoT., et al.. LC3, a mammalian homologue of yeast Atg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19(21): 5720-5728

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/