Abnormal calcium “Sparks” in cardiomyocytes of post-myocardial infarction heart

Kai Huang , Dan Huang , Shengquan Fu , Chongzhe Yang , Yuhua Liao

Current Medical Science ›› 2008, Vol. 28 ›› Issue (7) : 401 -408.

PDF
Current Medical Science ›› 2008, Vol. 28 ›› Issue (7) : 401 -408. DOI: 10.1007/s11596-008-0407-z
Article

Abnormal calcium “Sparks” in cardiomyocytes of post-myocardial infarction heart

Author information +
History +
PDF

Abstract

In ischemic hypertrophic myocardium, contractile dysfunction can be attributed to the decreased calcium induced calcium release (CICR) in cytoplasm. This study aimed to investigate the electrophysiological properties and the expression of L calcium channel subunits in post-MI myocardium. The ischemic heart remodeling model was established in SD rats. The expressions of calcium channel subunits were determined by realtime RT-PCR. Whole cell patch clamp was used to record the electrophysiological properties of L calcium channel. The results showed that the L calcium channel agonist Bayk 8644 induced the significantly decreased CICR in the rat cardiomyocyte 6 weeks after myocardial infarction (MI). In the post-MI cardiomyocytes, the amplitude of ICaL decreased dramatically and the inactivation curve of the current shifted to more negative potential. At mRNA level, the expression of the calcium channel alpha1c, beta2c subunits decreased dramatically in the ventricle of post-MI rats. The expression of alpha2/delta subunit, however, remained constant. It is concluded that the abnormal expression of the L calcium channel subunits in post-MI cardiomyocytes contributes to the ICaL decrease at early stage of the ischemic remodeling in cardiomyocytes, which leads to the decreased CICR in the cell and contractile dysfunction of myocardium.

Keywords

L calcium channel / gene expression / myocardial infarction / cardiovascular disease

Cite this article

Download citation ▾
Kai Huang, Dan Huang, Shengquan Fu, Chongzhe Yang, Yuhua Liao. Abnormal calcium “Sparks” in cardiomyocytes of post-myocardial infarction heart. Current Medical Science, 2008, 28(7): 401-408 DOI:10.1007/s11596-008-0407-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GheorghiadeM., BonowR. O.. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation, 1998, 97: 282-289

[2]

ManabeI., ShindoT., NagaiR.. Gene expression in fibroblasts and fibrosis involvement in cardiac hypertrophy. Circ Res, 2002, 91(12): 1103-1113

[3]

FleschM., SchifferF., ZolkO., et al.. Contractile systolic and diastolic dysfunction in renin-induced hypertensive cardiomyopathy. Hypertension, 1997, 30(3Pt1): 383-391

[4]

BraunwaldE., BristowM. R.. Congestive heart failure: fifty years of progress. Circulation, 2000, 102(Suppl4): IV14-IV23

[5]

HerronT. J., McDonaldK. S.. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ Res, 2002, 90: 1150-1152

[6]

BersD. M., GuoT.. Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci, 2005, 1047: 86-98

[7]

ScooteM., Poole-WilsonP. A., WilliamsA. J.. The therapeutic potential of new insights into myocardial excitation-contraction coupling. Heart, 2003, 89: 371-376

[8]

GómezA. M., ValdiviaH. H., ChengH., et al.. Defective excitationcontraction coupling in experimental cardiac hypertrophy and heart failure. Science, 1997, 276: 800-806

[9]

LindnerM., ErdmannE., BeuckelmannD. J.. Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol, 1998, 30: 743-749

[10]

HasenfussG., ReineckeH., StuderR., et al.. Relationship between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and non failing human myocardium. Circ Res, 1994, 75: 434-442

[11]

MeyerM., TrostS. U., BluhmW. F. J., et al.. Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy. Am J Physiol Heart Circ Physiol, 2001, 280: 2046-2052

[12]

BersD. M.. Excitation-contraction coupling and cardiac contractile force, 20012Dortrecht, Kluwer Academic Press: 427

[13]

BeuckelmannD. J., WierW. G.. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol (Lond), 1988, 405: 233-255

[14]

Barcenas-RuizL., WierW. G.. Voltage dependence of intracellular [Ca2+]i transients in guinea pig ventricular myocytes. Circ Res, 1987, 61: 148-154

[15]

CleemannL., MoradM.. Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction. J Physiol (Lond), 1991, 432: 283-312

[16]

duBellW. H., HouserS. R.. Voltage and beat dependence of the Ca2+ transient in feline ventricular myocytes. Am J Physiol Heart Circ Physiol, 1989, 257: H746-H759

[17]

LondonB., KruegerJ. W.. Contraction in voltage-clamped, internally perfused single heart cells. J Gen Physiol, 1986, 88: 475-505

[18]

BoixelC., GonzalezW., LouederL., et al.. Mechanisms of L-type Ca2+ Current downregulation in rat atrial myocytes during heart failure. Circ Res, 2001, 89: 607-613

[19]

PerrierE., KerfantB. G., LaleveeN., et al.. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation, 2004, 110: 776-783

[20]

DornG. W.2nd, RobbinsJ., SugdenP. H.. Phenotyping hypertrophy: eschew obfuscation. Circ Res, 2003, 92: 1171-1175

[21]

HobaiI., O’RourkeB.. Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 2001, 103: 1577-1584

[22]

BenjaminI. J., SchneiderM. D.. Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest, 2005, 115(3): 495-499

[23]

FabiatoA.. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol Cell Physiol, 1983, 245: C1-C14

[24]

GómezA. M., SchwallerB., ProzigH., et al.. Increased exchange current but normal Ca2+ transport via Na+-Ca2+ exchange during cardiac hypertrophy after myocardial infarction. Circ Res, 2002, 91: 323-330

[25]

FerrierG. R., HowlettS. E.. Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol, 2001, 280: H1928-H1944

[26]

GómezA. M., GuatimosimS., DillyK. W., et al.. Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation, 2001, 104(6): 688-693

[27]

SaraivaR. M., ChedidN. G., QuinteroH. C. C., et al.. Impaired beta-adrenergic response and decreased L type calcium current of hypertrophied left ventricular myocytes in postinfarction heart failure. Braz J Med Biol Res, 2003, 36(5): 635-648

[28]

AggarwarlR., BoydenP. A.. Diminished Ca2+ and Ba2+ currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart. Circ Res, 1995, 77: 1180-1191

[29]

SchultzD., MikalaG., YataniA., et al.. Cloning, chromoso mal localization, and functional expression of the a1 subunit of the L-type voltage-dependent calcium channel from normal human heart. Proc Natl Acad Sci USA, 1993, 90: 6228-6232

[30]

HullinR., AsmusF., SteinbeckG.. Competitive PCR for studying gene expression in micro biopsies. Mol Cell Biochem, 1997, 172: 89-95

[31]

CollinT., WangJ. J., NargeotN., et al.. Schwartz A. Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel bsubunit from normal human heart. Circ Res, 1993, 72: 1337-1344

[32]

HofmannF., LacinovaL., KlugbauerN.. Voltage dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol, 1999, 139: 33-86

[33]

HullinR., BielM., FlockerziV., et al.. Tissue-specific expression of calcium channels. Trends Cardiovasc Med, 1993, 3(2): 48-53

[34]

Perez-ReyesE., CastellanoA., KimH. S., et al.. Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem, 1992, 267(3): 1792-1797

[35]

HullinR., Singer-LahatD., FreichelM., et al.. Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J, 1992, 11(3): 885-890

[36]

FreiseD., HimmerkusN., SchrothG., et al.. Mutations of calcium channel beta subunit genes in mice. Biol Chem, 1999, 380: 897-902

[37]

HerselJ., JungS., MohacsiP., et al.. Expression of the L-type calcium channel in human heart failure. Basic Res Cardiol, 2002, 97(Suppl1): I4-10

[38]

HullinR., HerselJ., JungS., et al.. Expression of the voltage-dependent calcium channel β3a subunit and its splice variants in human myocardium. Circulation, 1998, 98(SupplI): I-401

[39]

HullinR., AsmusF., LudwigA., et al.. Subunit expression of the cardiac L-type calcium channel is differentially regulated in diastolic heart failure of the cardiac allograft. Circulation, 1999, 100: 155-163

[40]

YamadaY., NagashimaM., TsutsuuraM., et al.. Cloning of a functional splice variant of L-type calcium channel beta 2 subunit from rat heart. J Biol Chem, 2001, 276: 47163-47170

[41]

HullinR., FriedrichI., KhanY., et al.. Cardiac L-type calcium channel subunits expressed in human heart have differential effects on single channel characteristics. J Bio Chem, 2003, 278(24): 21623-21630

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/