Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of β-catenin into human renal tubular epithelial cells

Rui Zeng , Gang Xu , Min Han , Wei Liu , Xiaocheng Liu

Current Medical Science ›› 2007, Vol. 27 ›› Issue (2) : 630 -634.

PDF
Current Medical Science ›› 2007, Vol. 27 ›› Issue (2) : 630 -634. DOI: 10.1007/s11596-007-0602-3
Article

Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of β-catenin into human renal tubular epithelial cells

Author information +
History +
PDF

Abstract

Phosphorylation of β-catenin tyrosine residue 654 plays an important role in the epithelial to myofibroblast transition (EMT). Introducing mimic peptide of tyrosine residue 654 domain of β-catenin into cells may influence phosphorylation of β-catenin tyrosine residue 654. To deliver this mimic peptide into renal epithelial cells, we used penetratin as a vector, which is a novel cell permeable peptide, to deliver hydrophilic molecules into cells. A tyrosine 654 residue domain mimic peptide of β-catenin (PM) with fused penetratin was constructed, purified and then detected for the penetration of the mimic peptide into human renal tubular epithelial cells (HK-2). The results showed that purified fusion mimic peptide could efficiently and rapidly translocate into human renal tubular epithelial cells. It is concluded that a cell-permeable peptides mimic of tyrosine residue 654 domain of β-catenin was successfully obtained, which may provide a useful reagent for interfering the human renal tubular epithelial-mesenchymal transition.

Keywords

β-catenin / mimic peptide / cell permeable peptide / expression / purification / penetration

Cite this article

Download citation ▾
Rui Zeng, Gang Xu, Min Han, Wei Liu, Xiaocheng Liu. Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of β-catenin into human renal tubular epithelial cells. Current Medical Science, 2007, 27(2): 630-634 DOI:10.1007/s11596-007-0602-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JarverP., LangelU.. The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today, 2004, 9(9): 395-402

[2]

TemsamaniJ., VidalP.. The use of cell-penetrating peptides for drug delivery. Drug Discov Today, 2004, 9(23): 1012-1019

[3]

DeshayesS., MorrisC., DivitaG., HeitzF.. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci, 2005, 62(16): 1839-1849

[4]

DrinG., CottinS., BlancE., et al.. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem, 2003, 278(33): 31192-31201

[5]

YapA., BrieherW., GumbinerB.. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol, 1997, 13: 119-146

[6]

LilienJ., BalsamoJ.. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol, 2005, 17(5): 459-465

[7]

HuberA., WeisI.. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001, 105(3): 391-402

[8]

ProvostE., RimmD.. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol, 1999, 11(5): 567-572

[9]

KobielakA., PasolliH., FuchsE.. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol, 2004, 6(1): 21-30

[10]

HuberO., BierkampC., KemlerR.. Cadherins and catenins in development. Curr Opin Cell Biol, 1996, 8: 685-691

[11]

LilienJ., BalsamoJ., ArreguiC., et al.. Turn-off, drop-out: functional state switching of cadherins. Dev Dyn, 2002, 224(1): 18-29

[12]

RouraS., MiravetS., PiedraJ., Garcia de HerrerosA., DunachM.. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem, 1999, 274(51): 36734-36740

[13]

YangJ., LiuY.. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001, 159(4): 1465-1475

[14]

LiuY.. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol, 2004, 15(1): 1-12

[15]

JaneM., KyokoL., MitsuhikoI.. The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. Bio Essays, 2004, 26: 497-511

[16]

SchneiderQ., FinnertyR., MartindaleQ.. Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J Exp Zoolog B Mol Dev Evol, 2003, 295(1): 25-44

[17]

XuG., BalsamoJ., LilienJ.. Continual association of cadherin with beta-catenin requires the non-receptor tyrosine kinase Fer. J Cell Science, 2004, 15136(149): 113-119

[18]

HoriuchiK. Y., ScherleP. A., TrzaskosJ. M., et al.. Competitive inhibition of MAP kinase activation by a peptide representing the alpha C helix of ERK. Biochemistry, 1998, 37(25): 8879-8885

[19]

LeeJ. C., AdamsJ. L.. Inhibitors of serine/threonine kinases. Curr Opin Biotechnol, 1995, 6(6): 657-661

[20]

McCarthyM.. New molecular tool may lead to a new class of drugs. Lancet, 1999, 353(9170): 2134

[21]

AnnaE., MariaL., TamasB., et al.. VE-Cadherin-Derived Cell-Penetrating Peptide, pVEC with Carrier Functions. Exp Cell Res, 2001, 269: 237-244

[22]

DerossiD., JoliotA. H., ChassaingG., et al.. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994, 269(14): 10444-10450

[23]

DerossiD., ChassaingG., ProchiantzA.. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol, 1998, 8(2): 84-87

[24]

DrinG., DemeneH., TemsamaniJ., et al.. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry, 2001, 40(6): 1824-1834

[25]

BinderH., LindblomG.. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J, 2003, 85(2): 982-995

[26]

LetohaT., GaalS., SomlaiC., et al.. Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit, 2003, 16(5): 272-279

[27]

JauknechtR., ShihC., PriceP.. Rapid and efficient purifition of native histidine tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci USA, 1991, 88: 8972-8976

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/