Human midbrain dopaminergic progenitors (mDAPs) are one of the most representative cell types in both basic research and clinical applications. However, there are still many challenges for the preparation and quality control of mDAPs, such as the lack of standards. Therefore, the establishment of critical quality attributes and technical specifications for mDAPs is largely needed. “Human midbrain dopaminergic progenitor” jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human mDAPs in China. This standard specifies the technical requirements, test methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for human mDAPs, which is applicable to the quality control for human mDAPs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will facilitate the institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human mDAPs for clinical development and therapeutic applications.
‘Human neural stem cells’ jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that publication of the guideline will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hNSCs for clinical development and therapeutic applications.
Nuclear configuration plays a critical role in the compartmentalization of euchromatin and heterochromatin and the epigenetic regulation of gene expression. Under stimulation by inflammatory cytokines IFN-γ and TNF-α, human mesenchymal stromal cells (hMSCs) acquire a potent immunomodulatory function enabled by drastic induction of various effector genes, with some upregulated several magnitudes. However, whether the transcriptional upregulation of the immunomodulatory genes in hMSCs exposed to inflammatory cytokines is associated with genome-wide nuclear reconfiguration has not been explored. Here, we demonstrate that hMSCs undergo remarkable nuclear reconfiguration characterized by an enlargement of the nucleus, downregulation of LMNB1 and LMNA/C, decondensation of heterochromatin, and derepression of repetitive DNA. Interestingly, promyelocytic leukaemia-nuclear bodies (PML-NBs) were found to mediate the nuclear reconfiguration of hMSCs triggered by the inflammatory cytokines. Significantly, when PML was depleted, the immunomodulatory function of hMSCs conferred by cytokines was compromised, as reflected by the attenuated expression of effector molecules in hMSCs and their failure to block infiltration of immune cells to lipopolysaccharide (LPS)-induced acute lung injury. Our results indicate that the immunomodulatory function of hMSCs conferred by inflammatory cytokines requires PML-mediated chromatin loosening.
The successful progression of meiosis prophase I requires integrating information from the structural and molecular levels. In this study, we show that ZFP541 and KCTD19 work in the same genetic pathway to regulate the progression of male meiosis and thus fertility. The Zfp541 and/or Kctd19 knockout male mice show various structural and recombination defects including detached chromosome ends, aberrant localization of chromosome axis components and recombination proteins, and globally altered histone modifications. Further analyses on RNA-seq, ChIP-seq, and ATAC-seq data provide molecular evidence for the above defects and reveal that ZFP541/KCTD19 activates the expression of many genes by repressing several major transcription repressors. More importantly, we reveal an unexpected role of ZFP541/KCTD19 in directly modulating chromatin organization. These results suggest that ZFP541/KCTD19 simultaneously regulates the transcription cascade and chromatin organization to ensure the coordinated progression of multiple events at chromosome structural and biochemical levels during meiosis prophase I.
Early allograft dysfunction (EAD) is a life-threatening and fast-developing complication after liver transplantation. The underlying mechanism needs to be better understood, and there has yet to be an efficient therapeutic target. This study retrospectively reviewed 109 patients undergoing liver transplantation, with dynamic profiling of CD3/4/8/16/19/45/56 on the peripheral immune cells (before transplant and 2–4 days after). Altogether, 35 out of the 109 patients developed EAD after liver transplantation. We observed a significant decrease in the natural killer cell proportion (NK cell shift, p = 0.008). The NK cell shift was linearly correlated with cold ischemic time (p = 0.016) and was potentially related to the recipients' outcomes. In mouse models, ischemic/reperfusion (I/R) treatments induced the recruitment of NK cells from peripheral blood into liver tissues. NK cell depletion blocked a series of immune cascades (including CD8+ CD127+ T cells) and inhibited hepatocyte injury effectively in I/R and liver transplantation models. We further found that I/R treatment increased hepatic expression of the ligands for natural killer group 2 member D (NKG2D), a primary activating cell surface receptor in NK cells. Blockade of NKG2D showed a similar protective effect against I/R injury, indicating its role in NK cell activation and the subsequent immunological injury. Our findings built a bridge for the translation from innate immune response to EAD at the bedside. Peripheral NK cell shift is associated with the incidence of EAD after liver transplantation. NKG2D-mediated NK cell activation is a potential therapeutic target.
Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2−/− mice and LTB4R−/− mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2−/− and LTB4R−/− mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.
Pompe disease (PD) is a rare autosomal recessive disorder that presents with progressive hypertrophic cardiomyopathy. However, the detailed mechanism remains clarified. Herein, PD patient-specific induced pluripotent stem cells were differentiated into cardiomyocytes (PD-iCMs) that exhibited cardiomyopathic features of PD, including decreased acid alpha-glucosidase activity, lysosomal glycogen accumulation and hypertrophy. The defective mitochondria were involved in the cardiac pathology as shown by the significantly decreased number of mitochondria and impaired respiratory function and ATP production in PD-iCMs, which was partially due to elevated levels of intracellular reactive oxygen species produced from depolarized mitochondria. Further analysis showed that impaired fusion and autophagy of mitochondria and declined expression of mitochondrial complexes underlies the mechanism of dysfunctional mitochondria. This was alleviated by supplementation with recombinant human acid alpha-glucosidase that improved the mitochondrial function and concomitantly mitigated the cardiac pathology. Therefore, this study suggests that defective mitochondria underlie the pathogenesis of cardiomyopathy in patients with PD.
The decline in female fertility as age advances is intricately linked to the diminished developmental potential of oocytes. Despite this challenge, the strategies available to enhance the quality of aged oocytes remain limited. Epigallocatechin-3-gallate (EGCG), characterised by its anti-inflammatory, antioxidant and tissue protective properties, holds promise as a candidate for improving the quality of maternally aged oocytes. In this study, we explored the precise impact and underlying mechanisms of EGCG on aged oocytes. EGCG exhibited the capacity to enhance the quality of aged oocytes both in vitro and in vivo. Specifically, the application of EGCG in vitro resulted in noteworthy improvements, including an increased rate of first polar body extrusion, enhanced mitochondrial function, refined spindle morphology and a reduction in oxidative stress. These beneficial effects were further validated by the improved fertility observed among aged mice. In addition, our findings propose that EGCG might augment the expression of Arf6. This augmentation, in turn, contributes to the assembly of spindle-associated F-actin, which can contribute to mitigate the aneuploidy induced by the disruption of spindle F-actin within aged oocytes. This work thus contributes not only to understanding the role of EGCG in bolstering oocyte health, but also underscores its potential as a therapeutic intervention to address fertility challenges associated with advanced age.
Non-alcoholic fatty liver disease (NAFLD) has emerged as the primary risk factor for hepatocellular carcinoma (HCC), owing to improved vaccination rates of Hepatitis B and the increasing prevalence of metabolic syndrome related to obesity. Although the importance of innate and adaptive immune cells has been emphasized, the malignant transformation of hepatocytes and their intricate cellular network with the immune system remain unclear. The study incorporated four single-cell transcriptomic datasets of liver tissues covering healthy and NAFLD-related disease status. To identify the subsets and functions of hepatocytes and macrophages, we employed differential composition analysis, functional enrichment analysis, pseudotime analysis, and scenic analysis. Furthermore, an experimental mouse model for the transformation of nonalcoholic steatohepatitis into hepatocellular carcinoma was established for validation purposes. We defined CYP7A1+ hepatocytes enriched in precancerous lesions as ‘Transitional Cells’ in the progression from NAFLD to HCC. CYP7A1+ hepatocytes upregulated genes associated with stress response, inflammation and cancer-associated pathways and downregulated the normal hepatocyte signature. We observed that hypoxia activation accompanied the entire process of inflammation-cancer transformation. Hepatocyte-derived HIF1A was gradually activated during the progression of NAFLD disease to adapt to the hypoxic microenvironment and hepatocytes under hypoxic environment led to changes in the metabolism, proliferation and angiogenesis, promoting the occurrence of tumours. Meanwhile, hypoxia induced the polarization of RACK1+ macrophages that enriched in the liver tissues of NASH towards immunosuppressed TREM2+ macrophages. Moreover, immunosuppressive TREM2+ macrophages were recruited by tumour cells through the CCL15-CCR1 axis to enhance immunosuppressive microenvironment and promote NAFLD-related HCC progression. The study provides a deep understanding of the development mechanism of NAFLD-related HCC and offers theoretical support and experimental basis for biological targets, drug research, and clinical application.
Cell fate determination in mammalian development is complex and precisely controlled and accumulating evidence indicates that epigenetic mechanisms are crucially involved. N4-acetylcytidine (ac4C) is a recently identified modification of messenger RNA (mRNA); however, its functions are still elusive in mammalian. Here, we show that N-acetyltransferase 10 (NAT10)-mediated ac4C modification promotes ectoderm differentiation of human embryonic stem cells (hESCs) by acetylating nuclear receptor subfamily 2 group F member 1 (NR2F1) mRNA to enhance translation efficiency (TE). Acetylated RNA immunoprecipitation sequencing (acRIP-seq) revealed that levels of ac4C modification were higher in ectodermal neuroepithelial progenitor (NEP) cells than in hESCs or mesoendoderm cells. In addition, integrated analysis of acRIP-seq and ribosome profiling sequencing revealed that NAT10 catalysed ac4C modification to improve TE in NEP cells. RIP-qRT-PCR analysis identified an interaction between NAT10 and NR2F1 mRNA in NEP cells and NR2F1 accelerated the nucleus-to-cytoplasm translocation of yes-associated protein 1, which contributed to ectodermal differentiation of hESCs. Collectively, these findings point out the novel regulatory role of ac4C modification in the early ectodermal differentiation of hESCs and will provide a new strategy for the treatment of neuroectodermal defects diseases.
Drug resistance is perhaps the greatest obstacle in improving outcomes for cancer patients, leading to recurrence, progression and metastasis of various cancers. Exploring the underlying mechanism worth further study. N6-methyladenosine (m6A) is the most common RNA modification found in eukaryotes, playing a vital role in RNA translation, transportation, stability, degradation, splicing and processing. Long noncoding RNA (lncRNA) refers to a group of transcripts that are longer than 200 nucleotides (nt) and typically lack the ability to code for proteins. LncRNA has been identified to play a significant role in regulating multiple aspects of tumour development and progression, including proliferation, metastasis, metabolism, and resistance to treatment. In recent years, a growing body of evidence has emerged, highlighting the crucial role of the interplay between m6A modification and lncRNA in determining the sensitivity of cancer cells to chemotherapeutic agents. In this review, we focus on the recent advancements in the interaction between m6A modification and lncRNA in the modulation of cancer drug resistance. Additionally, we aim to explore the underlying mechanisms involved in this process. The objective of this review is to provide valuable insights and suggest potential future directions for the reversal of chemoresistance in cancer.
How to effectively repair cutaneous wounds and promote skin rejuvenation has always been a challenging issue for clinical medicine and medical aesthetics. Current conventional medicines exhibit several drawbacks, including limited therapeutic effects, prolonged treatment periods, and high costs. As a novel cell-free therapy, the umbilical cord-derived mesenchymal stem cell (UCMSC) secretome may offer a promising approach for skin regeneration and rejuvenation. The UCMSC secretome is a collection of all proteins secreted by mesenchymal stem cells, including conditioned media, exosomes, and other substances. The UCMSC secretome has numerous abilities to accelerate acute wound healing, including high fibroblast and keratinocyte proliferative activity, pro-angiogenesis, anti-inflammation, anti-fibrosis, and anti-oxidative stress. Its impact on the four stages of wound healing is manifested by inducing the haemostasis phase, inhibiting the inflammation phase, promoting the proliferation phase, and regulating the remodelling phase. Furthermore, it is highly effective in the treatment of chronic wounds, alopecia, aging, and skin homeostasis disturbance. This review focuses on the clinical therapies and application prospects of the UCMSC secretome, encompassing its source, culture, separation, identification, storage, and pretreatment. Additionally, a discussion on the dosage, administration route, efficacy, and biosafety in the clinical situation is presented. This review aims to provide scientific support for the mechanistic investigation and clinical utilisation of the UCMSC secretome in wound healing and skin rejuvenation.