2025-01-20 2025, Volume 58 Issue 1

  • Select all
  • ORIGINAL ARTICLE
    Meimei Yin , Lixiang Sun , Shuai Wu , Jinhang Ma , Wenlu Zhang , Xiaoxuan Ji , Zhichong Tang , Xiaowei Zhang , Yichun Yang , Xinyuan Zhang , Jin-wen Huang , Shaoluan Zheng , Wen-jie Liu , Chao Ji , Ling-juan Zhang
    2025, 58(1): e13722. https://doi.org/10.1111/cpr.13722

    Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.

  • REVIEW
    Ruyuan He , Zhuokun He , Tianyu Zhang , Bohao Liu , Minglang Gao , Ning Li , Qing Geng
    2025, 58(1): e13731. https://doi.org/10.1111/cpr.13731

    Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.

  • ORIGIN ALARTICLE
    Xiaoxu Dong , Gang Pei , Zhuo Yang , Shichao Huang
    2025, 58(1): e13732. https://doi.org/10.1111/cpr.13732

    Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) and plays a crucial role in neurological diseases. The process involves a series of steps, including NSC proliferation, migration and differentiation, which are regulated by multiple pathways such as neurotrophic Trk and fibroblast growth factor receptors (FGFR) signalling. Despite the discovery of numerous compounds capable of modulating individual stages of neurogenesis, it remains challenging to identify an agent that can regulate multiple cellular processes of neurogenesis. Here, through screening of bioactive compounds in dietary functional foods, we identified a flavonoid chrysin that not only enhanced the human NSCs proliferation but also facilitated neuronal differentiation and neurite outgrowth. Further mechanistic study revealed the effect of chrysin was attenuated by inhibition of neurotrophic tropomyosin receptor kinase-B (TrkB) receptor. Consistently, chrysin activated TrkB and downstream ERK1/2 and AKT. Intriguingly, we found that the effect of chrysin was also reduced by FGFR1 blockade. Moreover, extended treatment of chrysin enhanced levels of brain-derived neurotrophic factor, as well as FGF1 and FGF8. Finally, chrysin was found to promote neurogenesis in human cerebral organoids by increasing the organoid expansion and folding, which was also mediated by TrkB and FGFR1 signalling. To conclude, our study indicates that activating both TrkB and FGFR1 signalling could be a promising avenue for therapeutic interventions in neurological diseases, and chrysin appears to be a potential candidate for the development of such treatments.

  • ORIGINAL ARTICLE
    Shuai Zhu , Jiashuo Li , Xiuwan Wang , Yifei Jin , Hengjie Wang , Huiqing An , Hongzheng Sun , Longsen Han , Bin Shen , Qiang Wang
    2025, 58(1): e13733. https://doi.org/10.1111/cpr.13733

    The transition of chromatin configuration in mammalian oocytes from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) is critical for acquiring the developmental competence. However, the genomic and epigenomic features underlying this process remain poorly understood. In the present study, we first establish the chromatin accessibility landscape of mouse oocytes from NSN to SN stage. Through the integrative analysis of multi-omics, we find that the establishment of DNA methylation in oocytes is independent of the dynamics of chromatin accessibility. In contrast, histone H3K4me3 status is closely associated with the dynamics of accessible regions during configuration transition. Furthermore, by focusing on the actively transcribed genes in NSN and SN oocytes, we discover that chromatin accessibility coupled with histone methylation (H3K4me3 and H3K27me3) participates in the transcriptional control during phase transition. In sum, our data provide a comprehensive resource for probing configuration transition in oocytes, and offer insights into the mechanisms determining chromatin dynamics and oocyte quality.

  • ORIGINAL ARTICLE
    Lin Shen , Shuai Li , Yalin Wang , Yi Yin , Yiting Liu , Yunlei Zhang , Xuesheng Zheng
    2025, 58(1): e13734. https://doi.org/10.1111/cpr.13734

    The search for effective strategies to target tumour angiogenesis remains a critical goal of cancer research. We present a pioneering approach using alternating electric fields to inhibit tumour angiogenesis and enhance the therapeutic efficacy of bevacizumab. Chicken chorioallantoic membrane, cell viability and in vitro endothelial tube formation assays revealed that electric fields with a frequency of 1000 kHz and an electric intensity of 0.6 V/cm inhibited the growth of vascular endothelial cells and suppressed tumour-induced angiogenesis. In an animal U87MG glioma model, 1000 kHz electric fields inhibited tumour angiogenesis and suppressed tumour growth. As demonstrated by 3D vessel analysis, tumour vasculature in the control group was a stout, interwoven network. However, electric fields transformed it into slim, parallel capillaries that were strictly perpendicular to the electric field direction. This architectural transformation was accompanied by apoptosis of vascular endothelial cells and a notable reduction in tumour vessel number. Additionally, we found that the anti-angiogenesis and tumour-suppression effects of electric fields synergised with bevacizumab. The anti-angiogenic mechanisms of electric fields include disrupting spindle formation during endothelial cell division and downregulating environmental angiogenesis-related cytokines, such as interleukin-6, CXCL-1, 2, 3, 5 and 8, and matrix metalloproteinases. In summary, our findings demonstrate the potential of alternating electric fields (AEFs) as a therapeutic modality to impede angiogenesis and restrain cancer growth.

  • ORIGINAL ARTICLE
    Zhiyao Ma , Shikha Chawla , Xiaoyi Lan , Eva Zhou , Aillette Mulet-Sierra , Melanie Kunze , Mark Sommerfeldt , Adetola B. Adesida
    2025, 58(1): e13735. https://doi.org/10.1111/cpr.13735

    Collagenase digestion (d) and cellular outgrowth (og) are the current modalities of meniscus fibrochondrocytes (MFC) isolation for bioengineering and mechanobiology-related studies. However, the impact of these modalities on study outcomes is unknown. Here, we show that og- and d-isolated MFC have distinct proliferative capacities, transcriptomic profiles via RNA sequencing (RNAseq), extracellular matrix (ECM)-forming, and migratory capacities. Our data indicate that microtissue pellet models developed from og-isolated MFC display a contractile phenotype with higher expressions of alpha-smooth muscle actin (ACTA2) and transgelin (TAGLN) and are mechanically stiffer than their counterparts from d-MFC. Moreover, we introduce a novel method of MFC isolation designated digestion-after-outgrowth (dog). The transcriptomic profile of dog-MFC is distinct from d- and og-MFC, including a higher expression of mechanosensing caveolae-associated caveolin-1 (CAV1). Additionally, dog-MFC were superior chondrogenically and generated larger-size microtissue pellet models containing a higher frequency of smaller collagen fibre diameters. Thus, we demonstrate that the modalities of MFC isolation influence the downstream outcomes of bioengineering and mechanobiology-related studies.

  • ORIGINAL ARTICLE
    Xiaodie Li , Lei Li , Xin Fu , Shiqian Huang , Yuhao Wang , Yuepeng Yang , Shuqin Zhou , Zhaowei Zou , Qing Peng , Chao Zhang
    2025, 58(1): e13736. https://doi.org/10.1111/cpr.13736

    Chemodynamic therapy (CDT) has garnered significant attention for treating diverse malignant tumours due to its minimally invasive nature, reduced damage to healthy tissues, and potential mitigation of side effects. However, its application in glioblastoma (GBM) is hindered by the diminished capacity of CDT agents to traverse the blood–brain barrier (BBB), inadequate tumour targeting efficiency, and restricted availability of H2O2 within the tumour microenvironment (TME). To address these challenges, we devised a novel CDT agent (Fe@tFNAs-ANG-3AT) based on a tetrahedral framework nucleic acids (tFNAs). Fe@tFNAs-ANG-3AT was constructed by anchoring iron ions (Fe3+) onto the dual appendages-modified tFNAs. Specifically, one appendage, Angiopep-2 (ANG, a penetrating peptide), facilitates Fe@tFNAs-ANG-3AT penetration across the BBB and selective targeting of tumour cells. Simultaneously, the second appendage, 3-Amino-1,2,4-triazole (3AT, a H2O2 enzyme inhibitor), augments the H2O2 levels required for effective CDT treatment. Upon tumour cell internalization, the loaded Fe3+ in Fe@tFNAs-ANG-3AT is reduced to Fe2+ by the overexpressed glutathione (GSH) in the TME, catalysing the generation of cytotoxic hydroxyl radicals (•OH) and inducing tumour cell death via elevated oxidative stress levels within tumour cells. It is anticipated that Fe@tFNAs-ANG-3AT holds promise as a transformative treatment strategy for GBM.

  • ORIGINAL ARTICLE
    Yuanyuan Zheng , Fangrong Zhang , Haifeng Nie , Xinyu Li , Jiali Xun , Jianping Fu , Lijun Wu
    2025, 58(1): e13737. https://doi.org/10.1111/cpr.13737

    Valproic acid (VPA), a clinically approved small molecule, has been reported to activate Wnt signalling that is critical for dorsal–ventral (DV) patterning of neural tube. However, little is known about the impact of VPA on DV patterning process. Here, we show that even though VPA has a negative impact on the early formation of human neural tube organoids (hNTOs), it significantly enhances the efficiency of ventrally patterned hNTOs, when VPA is added during the entire differentiation process. RNA sequencing and RT-qPCR analysis demonstrates VPA activates endogenous Wnt signalling in hNTOs. Surprisingly, transcriptome analysis also identifies upregulation of genes for degradation of GLI2 and GLI3 proteins, whose truncated fragment are transcriptional repressors of Shh signalling. The Western-blot analysis confirms the increase of GLI3R proteins after VPA treatment. Thus, VPA might enhance ventral patterning of hNTOs through both activating Wnt, which can antagonise Shh signalling by inducing GLI3 expression, and/or inhibiting Shh signalling by inducing GLI protein degradation. We further obtain results to show that VPA still increases patterning efficiency of hNTOs with a weak influence on their early formation when the initiation time of VPA is delayed and its duration is reduced. Taken together, this study demonstrates that VPA enhances the generation of more reproducible hNTOs with ventral patterning, opening the avenues for the applications of hNTOs in developmental biology and regenerative medicine.

  • ORIGINAL ARTICLE
    Xiu-Ping Zhang , Wen-Bo Zou , Zhen-Qi Li , Ze-Tao Yu , Shao-Bo Yu , Zhao-Yi Lin , Fei-Fan Wu , Peng-Jiong Liu , Ming-Gen Hu , Rong Liu , Yu-Zhen Gao
    2025, 58(1): e13738. https://doi.org/10.1111/cpr.13738

    Given the growing interest in the metabolic heterogeneity of hepatocellular carcinoma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using multi-omics combinations. A single-cell RNA sequencing dataset encompassing six major cell types was obtained for integrated analysis. The optimal subtypes were identified using cluster stratification and validated using spatial transcriptomics and fluorescent multiplex immunohistochemistry. Then, a combined index based meta-cluster was calculated to verify its prognostic significance using multi-omics data from public cohorts. Our study first depicted the metabolic heterogeneity landscape of non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes interpret the metabolic characteristics of PVTT formation and development. The combined index provided effective predictions of prognosis and immunotherapy responses. Patients with a higher combined index had a relatively poor prognosis (p <0.001). We also found metabolism of polyamines was a key metabolic pathway involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified ODC1 was significantly higher expressed in PVTT compared to normal tissue (p =0.03). Our findings revealed both consistency and heterogeneity in the metabolism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-associated fibroblasts and myeloid cells conduce to predict prognosis and guide treatment. This offers new directions for understanding disease development and immunotherapy responses.

  • ORIGINAL ARTICLE
    Zhiyuan Wu , Wei Li , Melissa Tan , Faith Yuan Xin How , Haripriya Sadhasivan , Ratha Mahendran , Qinghui Wu , Edmund Chiong , Minh T. N. Le
    2025, 58(1): e13739. https://doi.org/10.1111/cpr.13739

    Interleukin-12 (IL-12) holds significant potential in cancer therapy; however, its clinical applicability is hindered by dose-limiting toxicity. Delivery of the IL-12 gene directly to tumours for constitutive IL-12 expression is a possible strategy to enhance its effectiveness while minimizing systemic toxicity. In this study, we investigate the potential of red blood cell-derived extracellular vesicles (RBCEVs) as a carrier for Il-12 plasmid delivery. We demonstrate that RBCEVs can be loaded with minicircle plasmid encoding IL-12 and delivered to MB49 bladder cancer cells for IL-12 expression. The expression of transgenes from minicircles was significantly higher than from the parental plasmids. RBCEV-mediated IL-12 expression stimulated immune responses in mouse splenocytes. Intratumoral delivery of Il-12 plasmid-loaded RBCEVs suppressed bladder cancer tumour growth, stimulated immune responses and promoted immune cell infiltration. In conclusion, our study demonstrates the promising potential of RBCEVs as an effective, safe and redosable nucleic acid drug delivery platform for IL-12.

  • ORIGINAL ARTICLE
    Meng-Jie Zhang , Wen-Ping Lin , Qing Wang , Shuo Wang , An Song , Yuan-Yuan Wang , Hao Li , Zhi-Jun Sun
    2025, 58(1): e13740. https://doi.org/10.1111/cpr.13740

    Inducing tertiary lymphoid structure (TLS) formation can fuel antitumor immunity. It is necessary to create mouse models containing TLS to explore strategies of TLS formation. Oncolytic herpes simplex virus-1 (oHSV) exhibited intense effects in preclinical and clinical trials. However, the role of oHSV in TLS formation remains to be elucidated. Here, we observed the presence of TLS in 4MOSC1 and MC38 subcutaneous tumour models. Interestingly, oHSV evoked TLS formation, and increased infiltration of B cells and stem-like TCF1+CD8+ T cells proliferation. Mechanistically, oHSV increased the expression of TLS-related chemokines, along with upregulated CXCL10/CXCR3 to facilitate TLS formation. Notably, CXCL10 and CXCR3 were favourable prognostic factors for cancer patients, and closely related with immune cells infiltration. Inhibiting CXCL10/CXCR3 reduced TCF1+CD8+ T cells and granzyme B expression, and impaired oHSV-mediated TLS formation. Furthermore, oHSV-mediated TLS formation revealed superior response and survival rate when combined with αPD-1 treatment. Collectively, these findings indicate that oHSV recruits stem-like TCF1+CD8+ T cells through CXCL10/CXCR3 pathway to propagate TLS formation, and warrants future antitumor immunity development.

  • ORIGINAL ARTICLE
    Shuai Mei , Xiaozhu Ma , Li Zhou , Qidamugai Wuyun , Ziyang Cai , Jiangtao Yan , Hu Ding
    2025, 58(1): e13742. https://doi.org/10.1111/cpr.13742

    Circular RNAs (circRNAs) are novel regulatory RNAs with high evolutionary conservation and stability, which makes them effective therapeutic agents for various vascular diseases. The SMAD family is a downstream mediator of the canonical transforming growth factor beta (TGF-β) signalling pathway and has been considered as a critical regulator in vascular injury. However, the role of circRNAs derived from the SMAD family members in vascular physiology remains unclear. In this study, we initially identified potential functional circRNAs originating from the SMAD family using integrated transcriptome screening. circSMAD3, derived from the SMAD3 gene, was identified to be significantly downregulated in vascular injury and atherosclerosis. Transcriptome analysis was conducted to comprehensively illustrate the pathways modulated by circRNAs. Functionally, circSMAD3 repressed vascular smooth muscle cell (VSMC) proliferation and phenotype switching in vitro evidenced by morphological assays, and ameliorated arterial injury-induced neointima formation in vivo. Mechanistically, circSMAD3 interacted with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) within the nucleus, enhanced its interaction with E3 ligase WD repeat domain 76 to promote hnRNPA1 ubiquitination degradation, facilitated p53 pre-RNA splicing, activated the p53γ signalling pathway, and finally suppressed VSMC proliferation and phenotype switching. Our study identifies circSMAD3 as a novel epigenetic regulator that suppresses VSMC proliferation and phenotype switching, thereby attenuating vascular remodelling and providing a new circRNA-based therapeutic strategy for cardiovascular diseases.

  • ORIGINAL ARTICLE
    Shenglin Wang , Lu Ao , Huangfeng Lin , Hongxiang Wei , Zhaoyang Wu , Shuting Lu , Fude Liang , Rongkai Shen , Huarong Zhang , Tongjie Miao , Xiaopei Shen , Jianhua Lin , Guangxian Zhong
    2025, 58(1): e13743. https://doi.org/10.1111/cpr.13743

    Bone metastasis (BM) is a mortality-related event of late-stage cancer, with non-small cell lung cancer (NSCLC) being a common origin for BM. However, the detailed molecular profiling of the metastatic bone ecosystem is not fully understood, hindering the development of effective therapies for advanced patients. In this study, we examined the cellular heterogeneity between primary tumours and BM from tissues and peripheral blood by single-cell transcriptomic analysis, which was verified using multiplex immunofluorescence staining and public datasets. Our results demonstrate a senescent microenvironment in BM tissues of NSCLC. BM has a significantly higher infiltration of malignant cells with senescent characteristics relative to primary tumours, accompanied by aggravated metastatic properties. The endothelial-mesenchymal transition involved with SOX18 activation is related to the cellular senescence of vascular endothelial cells from BM. CD4Tstr cells, with pronounced stress and senescence states, are preferentially infiltrated in BM, indicating stress-related dysfunction contributing to the immunocompromised environment during tumour metastasis to bone. Moreover, we identify the SPP1 pathway-induced cellular crosstalk among T cells, vascular ECs and malignant cells in BM, which activates SOX18 and deteriorates patient survival. Our findings highlight the roles of cellular senescence in modulating the microenvironment of BM and implicate anti-senescence therapy for advanced NSCLC patients.

  • ORIGINAL ARTICLE
    Jie Chen , Shan Wu , Jie-Jie He , Yu-Peng Liu , Zhao-Yang Deng , Han-Kai Fang , Jian-Fan Chen , Ya-Lan Wei , Zhen-Yu She
    2025, 58(1): e13745. https://doi.org/10.1111/cpr.13745

    Chromosome congression and alignment are essential for cell cycle progression and genomic stability. Kinesin-7 CENP-E, a plus-end-directed kinesin motor, is required for chromosome biorientation, congression and alignment in cell division. However, it remains unclear how chromosomes are aligned and segregated in the absence of CENP-E in mitosis. In this study, we utilize the CRISPR-Cas9 gene editing method and high-throughput screening to establish CENP-E knockout cell lines and reveal that CENP-E deletion results in defects in chromosome congression, alignment and segregation, which further promotes aneuploidy and genomic instability in mitosis. Both CENP-E inhibition and deletion lead to the dispersion of spindle poles, the formation of the multipolar spindle and spindle disorganization, which indicates that CENP-E is necessary for the organization and maintenance of spindle poles. In addition, CENP-E heterozygous deletion in spleen tissues also leads to the accumulation of dividing lymphocytes and cell cycle arrest in vivo. Furthermore, CENP-E deletion also disrupts the localization of key kinetochore proteins and triggers the activation of the spindle assembly checkpoint. In summary, our findings demonstrate that CENP-E promotes kinetochore-microtubule attachment and spindle pole organization to regulate chromosome alignment and spindle assembly checkpoint during cell division.

  • REVIEW
    Yanhu Li , Haijun Zhang , Fengguang Yang , Daxue Zhu , Shijie Chen , Zhaoheng Wang , Ziyan Wei , Zhili Yang , Jingwen Jia , Yizhi Zhang , Dongxin Wang , Mingdong Ma , Xuewen Kang
    2025, 58(1): e13752. https://doi.org/10.1111/cpr.13752

    SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction–oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.