Functional heterogeneity of meniscal fibrochondrocytes and microtissue models is dependent on modality of fibrochondrocyte isolation

Zhiyao Ma , Shikha Chawla , Xiaoyi Lan , Eva Zhou , Aillette Mulet-Sierra , Melanie Kunze , Mark Sommerfeldt , Adetola B. Adesida

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13735

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13735 DOI: 10.1111/cpr.13735
ORIGINAL ARTICLE

Functional heterogeneity of meniscal fibrochondrocytes and microtissue models is dependent on modality of fibrochondrocyte isolation

Author information +
History +
PDF

Abstract

Collagenase digestion (d) and cellular outgrowth (og) are the current modalities of meniscus fibrochondrocytes (MFC) isolation for bioengineering and mechanobiology-related studies. However, the impact of these modalities on study outcomes is unknown. Here, we show that og- and d-isolated MFC have distinct proliferative capacities, transcriptomic profiles via RNA sequencing (RNAseq), extracellular matrix (ECM)-forming, and migratory capacities. Our data indicate that microtissue pellet models developed from og-isolated MFC display a contractile phenotype with higher expressions of alpha-smooth muscle actin (ACTA2) and transgelin (TAGLN) and are mechanically stiffer than their counterparts from d-MFC. Moreover, we introduce a novel method of MFC isolation designated digestion-after-outgrowth (dog). The transcriptomic profile of dog-MFC is distinct from d- and og-MFC, including a higher expression of mechanosensing caveolae-associated caveolin-1 (CAV1). Additionally, dog-MFC were superior chondrogenically and generated larger-size microtissue pellet models containing a higher frequency of smaller collagen fibre diameters. Thus, we demonstrate that the modalities of MFC isolation influence the downstream outcomes of bioengineering and mechanobiology-related studies.

Cite this article

Download citation ▾
Zhiyao Ma, Shikha Chawla, Xiaoyi Lan, Eva Zhou, Aillette Mulet-Sierra, Melanie Kunze, Mark Sommerfeldt, Adetola B. Adesida. Functional heterogeneity of meniscal fibrochondrocytes and microtissue models is dependent on modality of fibrochondrocyte isolation. Cell Proliferation, 2025, 58(1): e13735 DOI:10.1111/cpr.13735

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HerwigJ, EgnerE, BuddeckeE. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43(4):635-640.

[2]

EnglundM, Guermazi A, LohmanderSL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am. 2009;47(4):703-712.

[3]

Sanchez-AdamsJ, Athanasiou KA. Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods. 2012;18(3):235-243.

[4]

McDevittCA, WebberRJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;252:8-18.

[5]

LuvsannyamE, JainMS, LeitaoAR, Maikawa N, LeitaoAE. Meniscus tear: pathology, incidence, and management. Cureus. 2022;14(5):e25121.

[6]

NumpaisalPO, JiangCC, HsiehCH, Chiang H, ChienCL. Prospective application of partially digested autologous chondrocyte for meniscus tissue engineering. Pharmaceutics. 2022;14(3):605.

[7]

HatsushikaD, MunetaT, NakamuraT, et al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr Cartil. 2014;22(7):941-950.

[8]

MarsanoA, Millward-Sadler SJ, SalterDM, et al. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthr Cartil. 2007;15(1):48-58.

[9]

LiangY, IdreesE, AndrewsSHJ, et al. Plasticity of human meniscus Fibrochondrocytes: a study on effects of mitotic divisions and oxygen tension. Sci Rep. 2017;7(1):12148.

[10]

NumpaisalPO, Rothrauff BB, GottardiR, ChienCL, TuanRS. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: an in vitro study. Connect Tissue Res. 2017;58(3-4):355-365.

[11]

NakataK, ShinoK, HamadaM, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001;391:S208-S218.

[12]

HendijaniF. Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 2017;50(2):e12334.

[13]

VerdonkPC, Forsyth RG, WangJ, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548-560.

[14]

CrisanM, Corselli M, ChenWC, PéaultB. Perivascular cells for regenerative medicine. J Cell Mol Med. 2012;16(12):2851-2860.

[15]

GroganSP, Barbero A, Diaz-RomeroJ, et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum. 2007;56(2):586-595.

[16]

AdesidaAB, Mulet-Sierra A, JomhaNM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3(2):9.

[17]

HaskoG, LindenJ, CronsteinB, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759-770.

[18]

ArufeMC, De la Fuente A, FuentesI, de ToroFJ, BlancoFJ. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem. 2010;111(4):834-845.

[19]

DominiciM, Le Blanc K, MuellerI, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.

[20]

Diaz-RomeroJ, Gaillard JP, GroganSP, NesicD, TrubT, Mainil-VarletP. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol. 2005;202(3):731-742.

[21]

WangZ, XuQ, ZhangN, Du X, XuG, YanX. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther. 2020;5(1):148.

[22]

SimmonsDL, Satterthwaite AB, TenenDG, SeedB. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol. 1992;148(1):267-271.

[23]

DeclercqHA, Forsyth RG, VerbruggenA, VerdonkR, Cornelissen MJ, VerdonkPC. CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J Orthop Res. 2012;30(5):800-808.

[24]

WangZ, YanX. CD146, a multi-functional molecule beyond adhesion. Cancer Lett. 2013;330(2):150-162.

[25]

EcharriA, Del Pozo MA. Caveolae -mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci. 2015;128(15):2747-2758.

[26]

BuwaN, Mazumdar D, BalasubramanianN. Caveolin1 Tyrosine-14 phosphorylation: role in cellular responsiveness to mechanical cues. J Membr Biol. 2020;253(6):509-534.

[27]

VyhlidalMJ, Adesida AB. Mechanotransduction in meniscus fibrochondrocytes: what about caveolae? J Cell Physiol. 2022;237(2):1171-1181.

[28]

SzojkaAR, Marqueti RC, LiDX, et al. Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. J Tissue Eng. 2021;12:2041731421990842.

[29]

ParrenoJ, RajuS, WuPH, KandelRA. MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes. Matrix Biol. 2017;62:3-14.

[30]

PetersenW, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol. 1998;197(4):317-324.

[31]

LuL, LiX, ZhaoY, et al. CCT2 enhances the proliferation and migration of head and neck squamous cell carcinoma via regulating cell cycle. Res Square. 2022.

[32]

RuiF, Abdalkareem EA, HuatLB, YinKB. Clusterin mRNA silencing reduces cell proliferation, inhibits cell migration, and increases CCL5 expression in SW480, SW620, and Caco2 cells. Turk J Biochem. 2022;47(3):297-307.

[33]

Pascual-VargasP, Arias-Garcia M, RoumeliotisTI, ChoudharyJS, BakalC. Multiplexed quantitative screens of single cell shape and YAP/TAZ localisation identify DOCK5 as a coincident detector of polarity and adhesion during migration. SSRN Electron J. 2021.

[34]

WangN, XueP, LiZ, LiY. Correction: IRS-1 increases TAZ expression and promotes osteogenic differentiation in rat bone marrow mesenchymal stem cells. Biol Open. 2023;12(1):bio059772.

[35]

ZhouM, HanY, JiangJ. Ulk4 promotes Shh signaling by regulating Stk36 ciliary localization and Gli2 phosphorylation. elife. 2023;12:RP88637.

[36]

WengRR, YangTT, HuangCE, Chang CW, WangWJ, LiaoJC. Super-resolution imaging reveals TCTN2 depletion-induced IFT88 lumen leakage and ciliary weakening. Biophys J. 2018;115(2):263-275.

[37]

MonnichM, Borgeskov L, BreslinL, et al. CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-beta/BMP signaling at the primary cilium. Cell Rep. 2018;22(10):2584-2592.

[38]

VuoloL, Stevenson NL, HeesomKJ, StephensDJ. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. elife. 2018;7:7.

[39]

MitchisonHM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241(2):294-309.

[40]

ZhaoZ, LiY, WangM, Zhao S, ZhaoZ, FangJ. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med. 2020;24(10):5408-5419.

[41]

Hellio Le GraverandMP, Ou Y, Schield-YeeT, et al. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anat. 2001;198(Pt 5):525-535.

[42]

SitarskaE, Almeida SD, BeckwithMS, et al. Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles. Nat Commun. 2023;14(1):5644.

[43]

Martinez-SalgadoC, Benckendorff AG, ChiangLY, et al. Stomatin and sensory neuron mechanotransduction. J Neurophysiol. 2007;98(6):3802-3808.

[44]

MorrisCR, Stanton MJ, MantheyKC, OhKB, WagnerKU. A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PLoS One. 2012;7(3):e34308.

[45]

O’ConorCJ, LeddyHA, BenefieldHC, Liedtke WB, GuilakF. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A. 2014;111(4):1316-1321.

[46]

AgarwalP, LeeHP, SmeriglioP, et al. A dysfunctional TRPV4-GSK3beta pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nat Biomed Eng. 2021;5(12):1472-1484.

[47]

JiC, WangY, WangQ, Wang A, AliA, McCullochCA. TRPV4 regulates beta1 integrin-mediated cell-matrix adhesions and collagen remodeling. FASEB J. 2023;37(6):e22946.

[48]

JiC, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca(2+) signaling to regulate extracellular matrix remodeling. FEBS J. 2021;288(20):5867-5887.

[49]

GadAK, NehruV, RuusalaA, Aspenstrom P. RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell. 2012;23(24):4807-4819.

[50]

CaiG, WuD, WangZ, et al. Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization. Oncogene. 2017;36(4):546-558.

[51]

HuLM, OuXH, ShiSY. A comprehensive analysis of G-protein-signaling modulator 2 as a prognostic and diagnostic marker for pan-cancer. Front Genet. 2022;13:984714.

[52]

Le CamL, Lacroix M, CiemerychMA, SardetC, Sicinski P. The E4F protein is required for mitotic progression during embryonic cell cycles. Mol Cell Biol. 2004;24(14):6467-6475.

[53]

SchmittE, Boutros R, FromentC, MonsarratB, Ducommun B, DozierC. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci. 2006;119(Pt 20):4269-4275.

[54]

Kandhaya-PillaiR, Miro-Mur F, Alijotas-ReigJ, TchkoniaT, Kirkland JL, SchwartzS. TNFalpha-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY). 2017;9(11):2411-2435.

[55]

OhishiT, Yoshida H, KatoriM, et al. Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion. Cancer Res. 2017;77(9):2328-2338.

[56]

EspejoR, Rengifo-Cam W, SchallerMD, EversBM, SastrySK. PTP-PEST controls motility, adherens junction assembly, and rho GTPase activity in colon cancer cells. Am J Physiol Cell Physiol. 2010;299(2):C454-C463.

[57]

HanB, BaiXH, LodygaM, et al. Conversion of mechanical force into biochemical signaling. J Biol Chem. 2004;279(52):54793-54801.

[58]

StoetzelC, BarS, De CraeneJO, et al. A mutation in VPS15 (PIK3R4) causes a ciliopathy and affects IFT20 release from the cis-Golgi. Nat Commun. 2016;7:13586.

[59]

SelfT, SobeT, CopelandNG, Jenkins NA, AvrahamKB, SteelKP. Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol. 1999;214(2):331-341.

[60]

AdamsNR, Vasquez YM, MoQ, GibbonsW, Kovanci E, DeMayoFJ. WNK lysine deficient protein kinase 1 regulates human endometrial stromal cell decidualization, proliferation, and migration in part through mitogen-activated protein kinase 7. Biol Reprod. 2017;97(3):400-412.

[61]

LiBJ, ChenH, JiangSS, et al. PX domain-containing kinesin KIF16B and microtubule-dependent intracellular movements. J Membr Biol. 2020;253(2):101-108.

[62]

KambicHE, FutaniH, McDevittCA. Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen. 2000;8(6):554-561.

[63]

GhadiallyFN, Lalonde JMA, YongNK. Myofibroblasts and intra cellular collagen in torn semilunar cartilages. J Submicrosc Cytol. 1980;12(3):447-456.

[64]

WipffPJ, RifkinDB, MeisterJJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311-1323.

[65]

RedmanSN, Dowthwaite GP, ThomsonBM, ArcherCW. The cellular responses of articular cartilage to sharp and blunt trauma. Osteoarthr Cartil. 2004;12(2):106-116.

[66]

LanX, MaZ, DimitrovA, et al. Double crosslinked hyaluronic acid and collagen as a potential bioink for cartilage tissue engineering. Int J Biol Macromol. 2024;273(Pt 1):132819.

[67]

ChangZ, Kishimoto Y, HasanA, WelhamNV. TGF-beta3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats. Dis Model Mech. 2014;7(1):83-91.

[68]

TaleleNP, Fradette J, DaviesJE, KapusA, HinzB. Expression of alpha-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 2015;4(6):1016-1030.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/