Mechanisms and therapeutic potential of disulphidptosis in cancer

Yanhu Li , Haijun Zhang , Fengguang Yang , Daxue Zhu , Shijie Chen , Zhaoheng Wang , Ziyan Wei , Zhili Yang , Jingwen Jia , Yizhi Zhang , Dongxin Wang , Mingdong Ma , Xuewen Kang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13752

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13752 DOI: 10.1111/cpr.13752
REVIEW

Mechanisms and therapeutic potential of disulphidptosis in cancer

Author information +
History +
PDF

Abstract

SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction–oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.

Cite this article

Download citation ▾
Yanhu Li, Haijun Zhang, Fengguang Yang, Daxue Zhu, Shijie Chen, Zhaoheng Wang, Ziyan Wei, Zhili Yang, Jingwen Jia, Yizhi Zhang, Dongxin Wang, Mingdong Ma, Xuewen Kang. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Proliferation, 2025, 58(1): e13752 DOI:10.1111/cpr.13752

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HayesJD, Dinkova-Kostova AT, TewKD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167-197.

[2]

SiesH, BerndtC, JonesDP. Oxidative stress. Annu Rev Biochem. 2017;86:715-748.

[3]

PavlovaNN, ZhuJ, ThompsonCB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34(3):355-377.

[4]

FaubertB, Solmonson A, DeBerardinisRJ. Metabolic reprogramming and cancer progression. Science. 2020;368(6487):eaaw5473.

[5]

CheungEC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22(5):280-297.

[6]

HarrisIS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30(6):440-451.

[7]

YanY, TengH, HangQ, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun. 2023;14(1):3673.

[8]

LiuX, ZhuangL, GanB. Disulfidptosis: disulfide stress-induced cell death. Trends Cell Biol. 2023;34:327-337.

[9]

AquilanoK, Baldelli S, CirioloMR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196.

[10]

KoppulaP, ZhangY, ZhuangL, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 2018;38(1):12.

[11]

LiuJ, XiaX, HuangP. xCT: a critical molecule that links cancer metabolism to redox signaling. Mol Ther. 2020;28(11):2358-2366.

[12]

NakamuraE, SatoM, YangH, et al. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem. 1999;274(5):3009-3016.

[13]

BannaiS. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 1986;261(5):2256-2263.

[14]

ConradM, SatoH. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids. 2012;42(1):231-246.

[15]

SatoH, TambaM, IshiiT, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274(17):11455-11458.

[16]

KandasamyP, Gyimesi G, KanaiY, HedigerMA. Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci. 2018;43(10):752-789.

[17]

KoppulaP, ZhuangL, GanB. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599-620.

[18]

LiuX, Olszewski K, ZhangY, et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol. 2020;22(4):476-486.

[19]

StipanukMH, DominyJE, LeeJ-I, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006;136(6 Suppl):1652S-1659S.

[20]

CombsJA, DeNicola GM. The non-essential amino acid cysteine becomes essential for tumor p roliferation and survival. Cancer. 2019;11(5):678.

[21]

IshiiT, BannaiS. The synergistic action of the copper chelator bathocuproine sulphonate and cysteine in enhancing growth of L1210 cells in vitro. J Cell Physiol. 1985;125(1):151-155.

[22]

YangWS, SriRamaratnam R, WelschME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1-2):317-331.

[23]

JiangX, Stockwell BR, ConradM. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282.

[24]

StockwellBR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401-2421.

[25]

BadgleyMA, KremerDM, MaurerHC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;368(6486):85-89.

[26]

SatoM, OnumaK, DomonM, et al. Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice. Int J Cancer. 2020;147(11):3224-3235.

[27]

WeaverK, SkoutaR. The selenoprotein glutathione peroxidase 4: from molecular mechanisms to novel therapeutic opportunities. Biomedicine. 2022;10(4):891.

[28]

DixonSJ, Lemberg KM, LamprechtMR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072.

[29]

CramerSL, SahaA, LiuJ, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23(1):120-127.

[30]

ZhangY, TanH, DanielsJD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26(5):623-633.e9.

[31]

JiangL, KonN, LiT, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57-62.

[32]

ZhangY, ShiJ, LiuX, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20(10):1181-1192.

[33]

LimJKM, Delaidelli A, MinakerSW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A. 2019;116(19):9433-9442.

[34]

HuK, LiK, LvJ, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 2020;130(4):1752-1766.

[35]

ZhangY, SwandaRV, NieL, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;12(1):1589.

[36]

LeuJIJ, MurphyME, GeorgeDL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci U S A. 2019;116(17):8390-8396.

[37]

ChuB, KonN, ChenD, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21(5):579-591.

[38]

BannaiS, IshiiT. A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts. J Cell Physiol. 1988;137(2):360-366.

[39]

GaoM, YiJ, ZhuJ, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73(2):354-363.e3.

[40]

GaoM, MonianP, QuadriN, Ramasamy R, JiangX. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59(2):298-308.

[41]

OkazakiS, UmeneK, YamasakiJ, et al. Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma. Cancer Sci. 2019;110(11):3453-3463.

[42]

QiaoH-X, HaoC-J, LiY, et al. JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun. 2008;370(4):584-588.

[43]

LiuX-X, LiX-J, ZhangB, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 2011;585(9):1363-1367.

[44]

YoshikawaM, Tsuchihashi K, IshimotoT, et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1855-1866.

[45]

DaiL, CaoY, ChenY, Parsons C, QinZ. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol. 2014;7:30.

[46]

ShinC-S, MishraP, WatrousJD, et al. The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun. 2017;8:15074.

[47]

KoppulaP, ZhangY, ShiJ, LiW, GanB. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem. 2017;292(34):14240-14249.

[48]

GojiT, Takahara K, NegishiM, KatohH. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem. 2017;292(48):19721-19732.

[49]

LiuX, NieL, ZhangY, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25(3):404-414.

[50]

ZhengT, LiuQ, XingF, Zeng C, WangW. Disulfidptosis: a new form of programmed cell death. J Exp Clin Cancer Res. 2023;42(1):137.

[51]

LiuX, ZhangY, ZhuangL, Olszewski K, GanB. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Diseases. 2021;8(6):731-745.

[52]

TummersB, GreenDR. Caspase-8: regulating life and death. Immunol Rev. 2017;277(1):76-89.

[53]

ZhengP, ZhouC, DingY, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023;42(1):103.

[54]

WangX, LinJ, LiZ, WangM. In what area of biology has a “new”type of cell death been discovered? Biochim Biophys Acta Rev Cancer. 2023;1878(5):188955.

[55]

GreenDR, VictorB. The pantheon of the fallen: why are there so many forms of cell death? Trends Cell Biol. 2012;22(11):555-556.

[56]

GreenDR. The coming decade of cell death research: five riddles. Cell. 2019;177(5):1094-1107.

[57]

TimmermanLA, HoltonT, YunevaM, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013;24(4):450-465.

[58]

MuirA, DanaiLV, GuiDY, Waingarten CY, LewisCA, Vander HeidenMG. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife. 2017;6:e27713.

[59]

SayinVI, LeBoeuf SE, SinghSX, et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. Elife. 2017;6:e28083.

[60]

RomeroR, SayinVI, DavidsonSM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23(11):1362-1368.

[61]

EagleH. Nutrition needs of mammalian cells in tissue culture. Science. 1955;122(3168):501-514.

[62]

EagleH. The specific amino acid requirements of a human carcinoma cell (stain HeLa) in tissue culture. J Exp Med. 1955;102(1):37-48.

[63]

JolyJH, Delfarah A, PhungPS, ParrishS, GrahamNA. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose. J Biol Chem. 2020;295(5):1350-1365.

[64]

ZhangD, LiJ, WangF, Hu J, WangS, SunY. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett. 2014;355(2):176-183.

[65]

BackusKM, Correia BE, LumKM, et al. Proteome-wide covalent ligand discovery in native biological systems. Nature. 2016;534(7608):570-574.

[66]

DayNJ, Gaffrey MJ, QianW-J. Stoichiometric thiol redox proteomics for quantifying cellular responses to perturbations. Antioxidants. 2021;10(3):499.

[67]

BoatnerLM, Palafox MF, SchweppeDK, BackusKM. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem Biol. 2023;30(6):683-698.e3.

[68]

DesaiHS, YanT, YuF, et al. SP3-enabled rapid and high coverage chemoproteomic identification of cell-state-dependent redox-sensitive cysteines. Mol Cell Proteomics. 2022;21(4):100218.

[69]

GalluzziL, VitaleI, AaronsonSA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541.

[70]

TangD, KangR, BergheTV, Vandenabeele P, KroemerG. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347-364.

[71]

PereiraDJC, Schoolwerth AC, PaisVM. Cystinuria: current concepts and future directions. Clin Nephrol. 2015;83(3):138-146.

[72]

ElmonemMA, VeysKR, SolimanNA, van Dyck M, van den HeuvelLP, LevtchenkoE. Cystinosis: a review. Orphanet J Rare Dis. 2016;11:47.

[73]

VandenabeeleP, Bultynck G, SavvidesSN. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol. 2023;24(5):312-333.

[74]

MaoC, WangM, ZhuangL, Gan B. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell. 2024;15:642-660.

[75]

ChenL, ZhangZ, HoshinoA, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 2019;1:404-415.

[76]

ZhongZ, ZhangC, NiS, et al. NFATc1-mediated expression of SLC7A11 drives sensitivity to TXNRD1 inhibitors in osteoclast precursors. Redox Biol. 2023;63:102711.

[77]

JantasD, Chwastek J, GrygierB, LasońW. Neuroprotective effects of necrostatin-1 against oxidative stress-induced cell damage: an involvement of cathepsin D inhibition. Neurotox Res. 2020;37(3):525-542.

[78]

SimonHU, Haj-Yehia A, Levi-SchafferF. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415-418.

[79]

WangY, ShiP, ChenQ, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 2019;11(12):1069-1082.

[80]

ShenH-M, LinY, ChoksiS, et al. Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol. 2004;24(13):5914-5922.

[81]

KühnS, Mannherz HG. Actin: structure, function, dynamics, and interactions with bacterial toxins. Curr Top Microbiol Immunol. 2017;399:1-34.

[82]

SmallJV, Stradal T, VignalE, RottnerK. The lamellipodium: where motility begins. Trends Cell Biol. 2002;12(3):112-120.

[83]

HohmannT, Dehghani F. The cytoskeleton-a complex interacting meshwork. Cells. 2019;8:4.

[84]

MerinoF, Pospich S, RaunserS. Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin Cell Dev Biol. 2020;102:51-64.

[85]

SaundersMG, Tempkin J, WeareJ, DinnerAR, RouxB, VothGA. Nucleotide regulation of the structure and dynamics of G-actin. Biophys J. 2014;106(8):1710-1720.

[86]

ScipionCPM, Ghoshdastider U, FerrerFJ, YuenT-Y, Wongsantichon J, RobinsonRC. Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proc Natl Acad Sci U S A. 2018;115(41):10345-10350.

[87]

LandinoJ, LedaM, MichaudA, et al. Rho and F-actin self-organize within an artificial cell cortex. Curr Biol. 2021;31(24):5613-5621.e5.

[88]

SunB, QuR, FanT, et al. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett. 2021;26(1):15.

[89]

DominguezR, HolmesKC. Actin structure and function. Annu Rev Biophys. 2011;40:169-186.

[90]

PollardTD, BorisyGG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453-465.

[91]

TangDD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18(1):54.

[92]

JanmeyPA, BuckiR, RadhakrishnanR. Regulation of actin assembly by PI(4, 5)P2 and other inositol phospholipids: an update on possible mechanisms. Biochem Biophys Res Commun. 2018;506(2):307-314.

[93]

BisariaA, HayerA, GarbettD, Cohen D, MeyerT. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science. 2020;368(6496):1205-1210.

[94]

SchaksM, Giannone G, RottnerK. Actin dynamics in cell migration. Essays Biochem. 2019;63(5):483-495.

[95]

SuarezC, Carroll RT, BurkeTA, et al. Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev Cell. 2015;32(1):43-53.

[96]

XueB, LeyratC, GrimesJM, Robinson RC. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci U S A. 2014;111(43):E4596-E4605.

[97]

OstrowskaZ, Moraczewska J. Cofilin-a protein controlling dynamics of actin filaments. Postepy Hig Med Dosw (Online). 2017;71:339-351.

[98]

HuangY, MaoX, van JaarsveldRH, et al. Variants in CAPZA2, a member of an F-actin capping complex, cause intellectual disability and developmental delay. Hum Mol Genet. 2020;29(9):1537-1546.

[99]

RottnerK, Stradal TEB. How distinct Arp2/3 complex variants regulate actin filament assembly. Nat Cell Biol. 2016;18(1):1-3.

[100]

TylerJJ, Smaczynska-de Rooij II, AbugharsaL, et al. Phosphorylation of the WH2 domain in yeast Las17/WASP regulates G-actin binding and protein function during endocytosis. Sci Rep. 2021;11(1):9718.

[101]

VemulaV, HuberT, UšajM, BugyiB, Månsson A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J Biol Chem. 2021;296:100181.

[102]

SeowCY. Myosin crossbridge, contractile unit, and the mechanism of contraction in airway smooth muscle: a mechanical engineer’s perspective. J Eng Sci Med Diagnostics Ther. 2019;2(1):108041-108046.

[103]

AboelkassemY, Trayanova N. Tropomyosin dynamics during cardiac muscle contraction as governed by a multi-well energy landscape. Prog Biophys Mol Biol. 2019;144:102-115.

[104]

KučeraO, Siahaan V, JandaD, et al. Anillin propels myosin-independent constriction of actin rings. Nat Commun. 2021;12(1):4595.

[105]

CoticchioG, Dal Canto M, Mignini RenziniM, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427-454.

[106]

MatsubayashiY, Coulson-Gilmer C, MillardTH. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing. J Cell Biol. 2015;210(3):419-433.

[107]

HoshinoD, BranchKM, WeaverAM. Signaling inputs to invadopodia and podosomes. J Cell Sci. 2013;126(Pt 14):2979-2989.

[108]

GardiniL, ArboreC, CapitanioM, Pavone FS. A protocol for single molecule imaging and tracking of processive myosin motors. MethodsX. 2019;6:1854-1862.

[109]

MashimaT, NaitoM, NoguchiK, Miller DK, NicholsonDW, TsuruoT. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene. 1997;14(9):1007-1012.

[110]

YinB, TangS, XuJ, et al. CRYAB protects cardiomyocytes against heat stress by preventing caspase-mediated apoptosis and reducing F-actin aggregation. Cell Stress Chaperones. 2019;24(1):59-68.

[111]

LiF, FanX, ZhangY, et al. Inhibition of myosin IIA-actin interaction prevents ischemia/reperfusion induced cardiomyocytes apoptosis through modulating PINK1/Parkin pathway and mitochondrial fission. Int J Cardiol. 2018;271:211-218.

[112]

LaiW-F, WongW-T. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev. 2020;58:101021.

[113]

MorrisonJH, BaxterMG. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci. 2012;13(4):240-250.

[114]

SeixasAI, Azevedo MM, Paes de FariaJ, FernandesD, Mendes Pinto I, RelvasJB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci. 2019;76(1):1-11.

[115]

VeH, CabanaVC, GouspillouG, Lussier MP. Quantitative immunoblotting analyses reveal that the abundance of actin, tubulin, synaptophysin and EEA1 proteins is altered in the brains of aged mice. Neuroscience. 2020;442:100-113.

[116]

BalasubramanianMK, Bi E, GlotzerM. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr Biol. 2004;14(18):R806-R818.

[117]

AltmannK, FrankM, NeumannD, Jakobs S, WestermannB. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J Cell Biol. 2008;181(1):119-130.

[118]

XuM-M, DengH-Y, LiH-H. MicroRNA-27a regulates angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting α-smooth muscle-actin in vitro. Biochem Biophys Res Commun. 2019;509(4):973-977.

[119]

ZhangX, LiuK, ZhangT, et al. Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway. Oncotarget. 2017;8(1):1541-1554.

[120]

JacquemetG, HamidiH, IvaskaJ. Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol. 2015;36:23-31.

[121]

ZengY, CaoY, LiuL, et al. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis. 2019;10(10):720.

[122]

ZhengC, YanS, LuL, et al. Lovastatin inhibits EMT and metastasis of triple-negative breast cancer stem cells through dysregulation of cytoskeleton-associated proteins. Front Oncol. 2021;11:656687.

[123]

PipaliyaBV, Trofimova DN, GrangeRL, et al. Truncated actin-targeting macrolide derivative blocks cancer cell motility and invasion of extracellular matrix. J Am Chem Soc. 2021;143(18):6847-6854.

[124]

ShankarJ, NabiIR. Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One. 2015;10(3):e0119954.

[125]

TangY, HeY, ZhangP, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol Cancer. 2018;17(1):77.

[126]

MartinsR, MaierJ, GorkiA-D, et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol. 2016;17(12):1361-1372.

[127]

LiZ, JiaoY, FanEK, et al. Aging-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of bacteria. J Immunol. 2017;199(9):3176-3186.

[128]

JankowskaKI, Williamson EK, RoyNH, et al. Integrins modulate T cell receptor signaling by constraining actin flow at the immunological synapse. Front Immunol. 2018;9:25.

[129]

DieckmannNMG, FrazerGL, AsanoY, Stinchcombe JC, GriffithsGM. The cytotoxic T lymphocyte immune synapse at a glance. J Cell Sci. 2016;129(15):2881-2886.

[130]

DustinML. The immunological synapse. Cancer Immunol Res. 2014;2(11):1023-1033.

[131]

NaB-R, KimH-R, PiragyteI, et al. TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. J Cell Biol. 2015;209(1):143-162.

[132]

RitterAT, Kapnick SM, MurugesanS, SchwartzbergPL, Griffiths GM, Lippincott-SchwartzJ. Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 2017;114(32):E6585-E6594.

[133]

PahlJ, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222(1):11-20.

[134]

WurzerH, Hoffmann C, Al AbsiA, ThomasC. Actin cytoskeleton straddling the immunological synapse between cytotoxic lymphocytes and cancer cells. Cells. 2019;8(5):463.

[135]

Al AbsiA, WurzerH, GuerinC, et al. Actin cytoskeleton remodeling drives breast cancer cell escape from natural killer-mediated cytotoxicity. Cancer Res. 2018;78(19):5631-5643.

[136]

CarneiroBA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395-417.

[137]

KorenE, FuchsY. Modes of regulated cell death in cancer. Cancer Discov. 2021;11(2):245-265.

[138]

HadianK, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov. 2023;22(9):723-742.

[139]

LeakL, DixonSJ. Surveying the landscape of emerging and understudied cell death mechanisms. Biochim Biophys Acta Mol Cell Res. 2023;1870(3):119432.

[140]

MengY, ChenX, DengG. Disulfidptosis: a new form of regulated cell death for cancer treatment. Mol Biomed. 2023;4(1):18.

[141]

LusbyR, DunneP, TiwariVK. Tumour invasion and dissemination. Biochem Soc Trans. 2022;50(3):1245-1257.

[142]

MosaddeghzadehN, Ahmadian MR. The RHO family GTPases: mechanisms of regulation and signaling. Cells. 2021;10(7):1831.

[143]

SitS-T, ManserE. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci. 2011;124(Pt 5):679-683.

[144]

SeetharamanS, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 2020;30(9):720-735.

[145]

Tajadura-OrtegaV, Garg R, AllenR, et al. An RNAi screen of Rho signalling networks identifies RhoH as a regulator of Rac1 in prostate cancer cell migration. BMC Biol. 2018;16(1):29.

[146]

DartAE, BoxGM, CourtW, et al. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol. 2015;211(4):863-879.

[147]

HudsonLG, Gillette JM, KangH, RiveraMR, Wandinger-Ness A. Ovarian tumor microenvironment signaling: convergence on the Rac1 GTPase. Cancer. 2018;10(10):358.

[148]

UrrutiaPJ, Bodaleo F, BórquezDA, et al. Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a. J Neurosci. 2021;41(8):1636-1649.

[149]

MüllerPM, Rademacher J, BagshawRD, et al. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol. 2020;22(4):498-511.

[150]

TerriacE, Coceano G, MavajianZ, et al. Vimentin levels and serine 71 phosphorylation in the control of cell-matrix adhesions, migration speed, and shape of transformed human fibroblasts. Cells. 2017;6(1):2.

[151]

ZengR-J, ZhengC-W, ChenW-X, Xu L-Y, LiE-M. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev. 2020;39(4):1245-1262.

[152]

DebaugniesM, Rodríguez-Acebes S, BlondeauJ, et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023;616(7955):168-175.

[153]

KhooP, AllanK, WilloughbyL, Brumby AM, RichardsonHE. In drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-myosin-II and JNK signalling. Dis Model Mech. 2013;6(3):661-678.

[154]

KotelevetsL, Chastre E. Rac1 signaling: from intestinal homeostasis to colorectal cancer metastasis. Cancer. 2020;12(3):665.

[155]

FreemanSA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev. 2014;262(1):193-215.

[156]

FerreiraBL, Ferreira É R, Bonfim-MeloA, MortaraRA, BahiaD. Trypanosoma cruzi extracellular amastigotes selectively trigger the PI3K/Akt and Erk pathways during HeLa cell invasion. Microbes Infect. 2019;21(10):485-489.

[157]

OhtaK, Matsumoto Y, NishioM. Common and unique mechanisms of filamentous actin formation by viruses of the genus Orthorubulavirus. Arch Virol. 2020;165(4):799-807.

[158]

IbarraN, Pollitt A, InsallRH. Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc Trans. 2005;33(Pt 6):1243-1246.

[159]

AlekhinaO, Burstein E, BilladeauDD. Cellular functions of WASP family proteins at a glance. J Cell Sci. 2017;130(14):2235-2241.

[160]

GrahamNA, Tahmasian M, KohliB, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589.

[161]

HuangJ-H, CoHK, LeeY-C, Wu C-C, ChenS-H. Multistability maintains redox homeostasis in human cells. Mol Syst Biol. 2021;17(10):e10480.

[162]

MeyerY, BelinC, Delorme-HinouxV, ReichheldJ-P, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal. 2012;17(8):1124-1160.

[163]

Al-YafeeYA, Al-Ayadhi LY, HaqSH, El-AnsaryAK. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurol. 2011;11:139.

[164]

DokainishHM, SimardDJ, GauldJW. A pseudohypervalent sulfur intermediate as an oxidative protective mechanism in the archaea peroxiredoxin enzyme ApTPx. J Phys Chem B. 2017;121(27):6570-6579.

[165]

JiP-Y, LiZ-Y, WangH, Dong J-T, LiX-J, YiH-L. Arsenic and sulfur dioxide co-exposure induce renal injury via activation of the NF-κB and caspase signaling pathway. Chemosphere. 2019;224:280-288.

[166]

BanJO, OhJH, KimTM, et al. Anti-inflammatory and arthritic effects of thiacremonone, a novel sulfur compound isolated from garlic via inhibition of NF-kappaB. Arthritis Res Ther. 2009;11(5):R145.

[167]

BrancaccioM, MilitoA, ViegasCA, Palumbo A, SimesDC, CastellanoI. First evidence of dermo-protective activity of marine sulfur-containing histidine compounds. Free Radic Biol Med. 2022;192:224-234.

[168]

TanabeTS, DahlC. HMS-S-S: a tool for the identification of Sulphur metabolism-related genes and analysis of operon structures in genome and metagenome assemblies. Mol Ecol Resour. 2022;22(7):2758-2774.

[169]

MeinlW, PabelU, Osterloh-QuirozM, HengstlerJG, GlattH. Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer. 2006;118(5):1090-1097.

[170]

KimSG, NovakRF. The induction of cytochrome P4502E1 by nitrogen-and sulfur-containing heterocycles: expression and molecular regulation. Toxicol Appl Pharmacol. 1993;120(2):257-265.

[171]

MooreLE, MalatsN, RothmanN, et al. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007;120(11):2452-2458.

[172]

BianchiniF, VainioH. Isothiocyanates in cancer prevention. Drug Metab Rev. 2004;36(3-4):655-667.

[173]

MacheskyLM. Deadly actin collapse by disulfidptosis. Nat Cell Biol. 2023;25(3):375-376.

[174]

Franklin-TongVE, Gourlay CW. A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem J. 2008;413(3):389-404.

[175]

WangL, Triviño M, LinZ, et al. New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. J Exp Bot. 2020;71(8):2451-2463.

[176]

KothakotaS, AzumaT, ReinhardC, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997;278(5336):294-298.

[177]

ColemanML, SahaiEA, YeoM, BoschM, DewarA, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3(4):339-345.

[178]

BencsathFA, Shartava A, MonteiroCA, GoodmanSR. Identification of the disulfide-linked peptide in irreversibly sickled cell beta-actin. Biochemistry. 1996;35(14):4403-4408.

[179]

FarahME, Sirotkin V, HaarerB, KakhniashviliD, AmbergDC. Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton (Hoboken, NJ). 2011;68(6):340-354.

[180]

FarahME, AmbergDC. Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell. 2007;18(4):1359-1365.

[181]

WabnitzGH, Goursot C, JahrausB, et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1(7):e58.

[182]

MorenoM-L, Escobar J, Izquierdo-Álvarez A, et al. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med. 2014;70:265-277.

[183]

HoggPJ. Disulfide bonds as switches for protein function. Trends Biochem Sci. 2003;28(4):210-214.

[184]

CremersCM, JakobU. Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 2013;288(37):26489-26496.

[185]

CummingRC, AndonNL, HaynesPA, Park M, FischerWH, SchubertD. Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem. 2004;279(21):21749-21758.

[186]

DeWaneG, SalviAM, DeMaliKA. Fueling the cytoskeleton -links between cell metabolism and actin remodeling. J Cell Sci. 2021;134(3):jcs248385.

[187]

BedouiS, HeroldMJ, StrasserA. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678-695.

[188]

TsvetkovP, CoyS, PetrovaB, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254-1261.

[189]

ShaoD, ShiL, JiH. Disulfidptosis: disulfide stress mediates a novel cell death pathway via actin cytoskeletal vulnerability. Mol Cells. 2023;46(7):414-416.

[190]

ChenX, ComishPB, TangD, Kang R. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9:637162.

[191]

HarayamaT, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281-296.

[192]

HarayamaT, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res. 2020;61(8):1150-1160.

[193]

LiangD, Minikes AM, JiangX. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82(12):2215-2227.

[194]

LeeJM, LeeH, KangS, Park WJ. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients. 2016;8(1):23.

[195]

DixonSJ, WinterGE, MusaviLS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10(7):1604-1609.

[196]

YuanH, LiX, ZhangX, Kang R, TangD. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478(3):1338-1343.

[197]

DollS, Proneth B, TyurinaYY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91-98.

[198]

LeeH, Zandkarimi F, ZhangY, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22(2):225-234.

[199]

ReedA, IchuT-A, MilosevichN, et al. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem Biol. 2022;17(6):1607-1618.

[200]

ZhangH-L, HuB-X, LiZ-L, et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol. 2022;24(1):88-98.

[201]

MagtanongL, Mueller GD, WilliamsKJ, et al. Context-dependent regulation of ferroptosis sensitivity. Cell Chem Biol. 2022;29(9):1568.

[202]

MagtanongL, KoP-J, ToM, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol. 2019;26(3):420-432.e9.

[203]

YangWS, KimKJ, GaschlerMM, Patel M, ShchepinovMS, StockwellBR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113(34):E4966-E4975.

[204]

LuisG, Godfroid A, NishiumiS, et al. Tumor resistance to ferroptosis driven by stearoyl-CoA desaturase-1 (SCD1) in cancer cells and fatty acid biding protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021;43:102006.

[205]

LiangD, FengY, ZandkarimiF, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 2023;186(13):2748-2764.e22.

[206]

ZouY, LiH, GrahamET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 2020;16(3):302-309.

[207]

YanB, AiY, SunQ, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 2021;81(2):355-369.e10.

[208]

ShahR, Shchepinov MS, PrattDA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 2018;4(3):387-396.

[209]

ConradM, PrattDA. The chemical basis of ferroptosis. Nat Chem Biol. 2019;15(12):1137-1147.

[210]

VogtA-CS, Arsiwala T, MohsenM, VogelM, Manolova V, BachmannMF. On iron metabolism and its regulation. Int J Mol Sci. 2021;22(9):4591.

[211]

ChenX, YuC, KangR, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

[212]

FengH, Schorpp K, JinJ, et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30(10):3411-3423.e7.

[213]

GaoM, MonianP, PanQ, ZhangW, XiangJ, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021-1032.

[214]

HouW, XieY, SongX, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425-1428.

[215]

BrownCW, AmanteJJ, ChhoyP, et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51(5):575-586.e4.

[216]

SasakiH, SatoH, Kuriyama-MatsumuraK, et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem. 2002;277(47):44765-44771.

[217]

SatoH, NomuraS, MaebaraK, Sato K, TambaM, BannaiS. Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun. 2004;325(1):109-116.

[218]

ChenD, FanZ, RauhM, Buchfelder M, EyupogluIY, SavaskanN. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 2017;36(40):5593-5608.

[219]

SongX, ZhuS, ChenP, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol. 2018;28(15):2388-2399.e5.

[220]

LiuT, JiangL, TavanaO, Gu W. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 2019;79(8):1913-1924.

[221]

GaoR, Kalathur RKR, Coto-LlerenaM, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13(12):e14351.

[222]

WangZ, OuyangL, LiuN, et al. The DUBA-SLC7A11-c-Myc axis is critical for stemness and ferroptosis. Oncogene. 2023;42(36):2688-2700.

[223]

IngoldI, BerndtC, SchmittS, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409-422.e21.

[224]

LiZ, Ferguson L, DeolKK, et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat Chem Biol. 2022;18(7):751-761.

[225]

AlborziniaH, ChenZ, YildizU, et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med. 2023;15(8):e18014.

[226]

WuK, YanM, LiuT, et al. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat Cell Biol. 2023;25(5):714-725.

[227]

YangX, WangZ, ZandkarimiF, et al. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. Cell Metab. 2023;35(8):1474-1490.e8.

[228]

WuS, MaoC, KondiparthiL, PoyurovskyMV, Olszewski K, GanB. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2 in mitochondria. Proc Natl Acad Sci U S A. 2022;119(26):e2121987119.

[229]

MaoC, LiuX, ZhangY, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593(7860):586-590.

[230]

SoulaM, WeberRA, ZilkaO, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16(12):1351-1360.

[231]

KraftVAN, Bezjian CT, PfeifferS, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6(1):41-53.

[232]

BersukerK, Hendricks JM, LiZ, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688-692.

[233]

DollS, Freitas FP, ShahR, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693-698.

[234]

CobinePA, MooreSA, LearySC. Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res. 1868;2021(1):118867.

[235]

KuoMT, FuS, SavarajN, Chen HHW. Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy. Cancer Res. 2012;72(18):4616-4621.

[236]

LinC, ZhangZ, WangT, Chen C, JamesKY. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics. 2015;7(8):1285-1289.

[237]

PalumaaP, KangurL, VoronovaA, Sillard R. Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J. 2004;382(Pt 1):307-314.

[238]

WrightGSA. Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans. 2020;48(4):1795-1806.

[239]

HatoriY, Lutsenko S. The role of copper chaperone Atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants. 2016;5(3):25.

[240]

TapiaL, González-Agüero M, CisternasMF, et al. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J. 2004;378(Pt 2):617-624.

[241]

SchmidtK, RalleM, SchafferT, et al. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem. 2018;293(52):20085-20098.

[242]

TsvetkovP, Detappe A, CaiK, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15(7):681-689.

[243]

DreishpoonMB, BickNR, PetrovaB, et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem. 2023;299(9):105046.

[244]

RowlandEA, Snowden CK, CristeaIM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol. 2018;42:76-85.

[245]

SongX, ZhuS, XieY, et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology. 2018;154(5):1480-1493.

[246]

LiuJ, KuangF, KangR, Tang D. Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther. 2020;27(5):267-269.

[247]

SwietachP, PatiarS, SupuranCT, Harris AL, Vaughan-JonesRD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J Biol Chem. 2009;284(30):20299-20310.

[248]

WhiteKA, Grillo-Hill BK, BarberDL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci. 2017;130(4):663-669.

[249]

ZhuS, LiuJ, KangR, Yang M, TangD. Targeting NF-κB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem Biophys Res Commun. 2021;562:55-61.

[250]

TangT, YangZ-Y, WangD, et al. The role of lysosomes in cancer development and progression. Cell Biosci. 2020;10(1):131.

[251]

GurunathanS, KangM-H, QasimM, Khan K, KimJ-H. Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int J Nanomed. 2021;16:3357-3383.

[252]

DuW, GuM, HuM, et al. Lysosomal Zn2+release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep. 2021;37(3):109848.

[253]

DengL, HeS, GuoN, TianW, ZhangW, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res. 2023;72(2):281-299.

[254]

TongX, TangR, XiaoM, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15(1):174.

[255]

Rojo de la VegaM, Chapman E, ZhangDD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21-43.

[256]

KoppulaP, Olszewski K, ZhangY, et al. KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition. IScience. 2021;24(6):102649.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/