TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis

Meimei Yin , Lixiang Sun , Shuai Wu , Jinhang Ma , Wenlu Zhang , Xiaoxuan Ji , Zhichong Tang , Xiaowei Zhang , Yichun Yang , Xinyuan Zhang , Jin-wen Huang , Shaoluan Zheng , Wen-jie Liu , Chao Ji , Ling-juan Zhang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13722

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (1) : e13722 DOI: 10.1111/cpr.13722
ORIGINAL ARTICLE

TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis

Author information +
History +
PDF

Abstract

Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.

Cite this article

Download citation ▾
Meimei Yin, Lixiang Sun, Shuai Wu, Jinhang Ma, Wenlu Zhang, Xiaoxuan Ji, Zhichong Tang, Xiaowei Zhang, Yichun Yang, Xinyuan Zhang, Jin-wen Huang, Shaoluan Zheng, Wen-jie Liu, Chao Ji, Ling-juan Zhang. TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis. Cell Proliferation, 2025, 58(1): e13722 DOI:10.1111/cpr.13722

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LimandjajaGC, Niessen FB, ScheperRJ, GibbsS. The keloid disorder: heterogeneity, histopathology, mechanisms and models. Front Cell Dev Biol. 2020;8:360.

[2]

BermanB, Maderal A, RaphaelB. Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatologic Surg. 2017;43(Suppl 1):S3-S18.

[3]

AndrewsJP, Marttala J, MacarakE, RosenbloomJ, UittoJ. Keloids: the paradigm of skin fibrosis-pathomechanisms and treatment. Matrix Biol. 2016;51:37-46.

[4]

GilbaneAJ, DentonCP, HolmesAM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther. 2013;15(3):215.

[5]

GabrielliA, Avvedimento EV, KriegT. Scleroderma. N Engl J Med. 2009;360(19):1989-2003.

[6]

MacarakEJ, Wermuth PJ, RosenbloomJ, UittoJ. Keloid disorder: fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol. 2021;30(1):132-145.

[7]

ShawTJ, KishiK, MoriR. Wound-associated skin fibrosis: mechanisms and treatments based on modulating the inflammatory response. Endocr Metab Immune Disord Drug Targets. 2010;10(4):320-330.

[8]

PlikusMV, WangX, SinhaS, et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184(15):3852-3872.

[9]

JoostS, Annusver K, JacobT, et al. The molecular anatomy of mouse skin during hair growth and rest. Cell Stem Cell. 2020;26(3):441-457 e7.

[10]

DriskellRR, Lichtenberger BM, HosteE, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504(7479):277.

[11]

ZhangZZ, ShaoM, HeplerC, et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest. 2019;129(12):5327-5342.

[12]

ChenSX, ZhangLJ, GalloRL. Dermal white adipose tissue: a newly recognized layer of skin innate defense. J Invest Dermatol. 2019;139(5):1002-1009.

[13]

ZhangLJ, Guerrero-Juarez CF, HataT, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67-71.

[14]

SunL, ZhangX, WuS, et al. Dynamic interplay between IL-1 and WNT pathways in regulating dermal adipocyte lineage cells during skin development and wound regeneration. Cell Rep. 2023;42(6):112647.

[15]

HuangJ, HengS, ZhangW, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol. 2022;S1084-9521(22):64-67.

[16]

WenQ, Mithieux SM, WeissAS. Elastin biomaterials in dermal repair. Trends Biotechnol. 2020;38(3):280-291.

[17]

Correa-GallegosD, Ye H, DasguptaB, et al. CD201(+) fascia progenitors choreograph injury repair. Nature. 2023;623(7988):792-802.

[18]

Correa-GallegosD, Jiang D, ChristS, et al. Patch repair of deep wounds by mobilized fascia. Nature. 2019;576(7786):287-292.

[19]

ZhangLJ, Guerrero-Juarez CF, ChenSX, et al. Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci Transl Med. 2021;13(577):1-12.

[20]

SkaugB, KhannaD, SwindellWR, et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis. 2020;79(3):379-386.

[21]

HaoY, HaoS, Andersen-NissenE, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587 e29.

[22]

TrapnellC, Cacchiarelli D, GrimsbyJ, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-386.

[23]

StreetK, RissoD, FletcherRB, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):477.

[24]

GulatiGS, Sikandar SS, WescheDJ, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367(6476):405-411.

[25]

NazariB, RiceLM, StifanoG, et al. Altered dermal fibroblasts in systemic sclerosis display Podoplanin and CD90. Am J Pathol. 2016;186(10):2650-2664.

[26]

Wang,G., SwerenE., LiuH., Wier E., AlphonseM.P., ChenR., IslamN., LiA., XueY., ChenJ., Park S., ChenY., LeeS., WangY., WangS., Archer N.K., AndrewsW., KaneM.A., DareE., ReddyS.K., Hu Z., GriceE.A., MillerL.S., GarzaL.A., Bacteria induce skin regeneration via IL-1beta signaling. Cell Host Microbe, 2021. 29(5):p. 777-791 e6.

[27]

RyuYC, LeeDH, ShimJ, et al. KY19382, a novel activator of Wnt/beta-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178(12):2533-2546.

[28]

NelsonAM, Katseff AS, ResnikSR, RatliffTS, ZhuAS, GarzaLA. Interleukin-6 null mice paradoxically display increased STAT3 activity and wound-induced hair neogenesis. J Invest Dermatol. 2016;136(5):1051-1053.

[29]

NelsonAM, LoyDE, LawsonJA, Katseff AS, FitzGeraldGA, GarzaLA. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J Invest Dermatol. 2013;133(4):881-889.

[30]

ItoM, YangZ, AndlT, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316-320.

[31]

IidaM, IharaS, MatsuzakiT. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Develop Growth Differ. 2007;49(3):185-195.

[32]

JiaoH, ZhangT, FanJ, XiaoR. The superficial dermis May initiate keloid formation: histological analysis of the keloid dermis at different depths. Front Physiol. 2017;8:885.

[33]

de VriesHJ, Enomoto DN, Van MarleJ, Van ZuijlenPP, MekkesJR, BosJD. Dermal organization in scleroderma: the fast Fourier transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin. Lab Investig. 2000;80(8):1281-1289.

[34]

EhrlichHP, Desmoulière A, DiegelmannRF, et al. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105-113.

[35]

SakersA, de Siqueira MK, SealeP, VillanuevaCJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3):419-446.

[36]

MerrickD, SakersA, IrgebayZ, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019;364(6438):1-11.

[37]

FarupJ, JustJ, de PaoliF, et al. Human skeletal muscle CD90(+) fibro-adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients. Cell Metab. 2021;33(11):2201-2214 e11.

[38]

FerreroR, RainerP, DeplanckeB. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 2020;30(12):937-950.

[39]

ZhangLJ, ChenSX, Guerrero-JuarezCF, et al. Age-related loss of innate immune antimicrobial function of dermal fat is mediated by transforming growth factor Beta. Immunity. 2019;50(1):121-136 e5.

[40]

WoellerCF, O’Loughlin CW, PollockSJ, ThatcherTH, FeldonSE, PhippsRP. Thy1 (CD90) controls adipogenesis by regulating activity of the Src family kinase. Fyn FASEB J. 2015;29(3):920-931.

[41]

HelmboldP, Fiedler E, FischerM, MarschWC. Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol. 2004;31(6):431-440.

[42]

CatheryW, Faulkner A, MaselliD, MadedduP. Concise review: the regenerative journey of pericytes toward clinical translation. Stem Cells. 2018;36(9):1295-1310.

[43]

RajkumarVS, HowellK, CsiszarK, Denton CP, BlackCM, AbrahamDJ. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther. 2005;7(5):R1113-R1123.

[44]

FleischmajerR, Damiano V, NedwichA. Alteration of subcutaneous tissue in systemic scleroderma. Arch Dermatol. 1972;105(1):59-66.

[45]

WangQ, LiXL, GuoLH, Shi H, ChenHY. Non-tumorous skin lesions. Diagnostic Ultrasound in Dermatology. Springer Nature Singapore Pte Ltd.; 2022:177-213.

[46]

WangG, SwerenE, AndrewsW, et al. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1alpha signaling and glutamine metabolism. Sci Adv. 2023;9(1):eabo7555.

[47]

GuptaR, TuratiV, BrianD, et al. Nov/CCN3 enhances cord blood engraftment by rapidly recruiting latent human stem cell activity. Cell Stem Cell. 2020;26(4):527-541 e8.

[48]

RaajendiranA, OoiG, BaylissJ, et al. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 2019;27(5):1528-1540 e7.

[49]

GuptaR, HongD, IborraF, Sarno S, EnverT. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science. 2007;316(5824):590-593.

[50]

EhrlundA, Mejhert N, Lorente-CebriánS, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab. 2013;98(3):E503-E508.

[51]

AlfaroMP, PagniM, VincentA, et al. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA. 2008;105(47):18366-18371.

[52]

ZouY, WangYN, MaH, et al. SCD1 promotes lipid mobilization in subcutaneous white adipose tissue. J Lipid Res. 2020;61(12):1589-1604.

[53]

WangW, KissigM, RajakumariS, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci USA. 2014;111(40):14466-14471.

[54]

LafyatisR. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10(12):706-719.

[55]

JagadeesanJ, BayatA. Transforming growth factor beta (TGFbeta) and keloid disease. Int J Surg. 2007;5(4):278-285.

[56]

Mordasky MarkellL, Pérez-Lorenzo R, MasiukKE, KennettMJ, GlickAB. Use of a TGFbeta type I receptor inhibitor in mouse skin carcinogenesis reveals a dual role for TGFbeta signaling in tumor promotion and progression. Carcinogenesis. 2010;31(12):2127-2135.

[57]

MarangoniRG, VargaJ, TourtellotteWG. Animal models of scleroderma: recent progress. Curr Opin Rheumatol. 2016;28(6):561-570.

[58]

TominagaK, SuzukiHI. TGF-beta signaling in cellular senescence and aging-related pathology. Int J Mol Sci. 2019;20(20):1-18.

[59]

JiangD, Rinkevich Y. Furnishing wound repair by the subcutaneous fascia. Int J Mol Sci. 2021;22(16):1-14.

[60]

JiangD, ChristS, Correa-GallegosD, et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun. 2020;11(1):5653.

[61]

BoothbyIC, KinetMJ, BodaDP, et al. Early-life inflammation primes a T helper 2 cell-fibroblast niche in skin. Nature. 2021;599(7886):667-672.

[62]

DaltonCJ, LemmonCA. Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells. 2021;10(9):1-20.

[63]

SabatierL, ChenD, Fagotto-KaufmannC, et al. Fibrillin assembly requires fibronectin. Mol Biol Cell. 2009;20(3):846-858.

[64]

LiL, LiaoJ, YuanQ, et al. Fibrillin-1-enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. Sci Adv. 2021;7(5):1-13.

[65]

HanC, Leonardo TR, Romana-SouzaB, et al. Microfibril-associated protein 5 and the regulation of skin scar formation. Sci Rep. 2023;13(1):8728.

[66]

BarronAMS, Mantero JC, HoJD, et al. Perivascular adventitial fibroblast specialization accompanies T cell retention in the inflamed human dermis. J Immunol. 2019;202(1):56-68.

[67]

TabibT, HuangM, MorseN, et al. Myofibroblast transcriptome indicates SFRP2(hi) fibroblast progenitors in systemic sclerosis skin. Nat Commun. 2021;12(1):4384.

[68]

VorstandlechnerV, Laggner M, KalininaP, et al. Deciphering the functional heterogeneity of skin fibroblasts using single-cell RNA sequencing. FASEB J. 2020;34(3):3677-3692.

[69]

VorstandlechnerV, Laggner M, CopicD, et al. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat Commun. 2021;12(1):6242.

[70]

SoareA, Györfi HA, MateiAE, et al. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheumatol. 2020;72(1):137-149.

[71]

Farrington-RockC, Crofts NJ, DohertyMJ, AshtonBA, Griffin-Jones C, CanfieldAE. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110(15):2226-2232.

[72]

PicoliCC, Birbrair A, LiZ. Pericytes as the orchestrators of vasculature and adipogenesis. Genes (Basel). 2024;15(1):1-13.

[73]

TangW, ZeveD, SuhJM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583-586.

[74]

SundbergC, Ivarsson M, GerdinB, RubinK. Pericytes as collagen-producing cells in excessive dermal scarring. Lab Investig. 1996;74(2):452-466.

[75]

ThomasH, CowinAJ, MillsSJ. The importance of pericytes in healing: wounds and other pathologies. Int J Mol Sci. 2017;18(6):1-14.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/