Background: The majority of patients with prostate cancer (PCa) exhibit intrinsic resistance to immune checkpoint blockade (ICB) following radiotherapy (RT). This resistance is generally attributed to the limited antigen presentation of heterogeneous cells within tumors. Here, we aimed to isolate and characterize these diverse subgroups of tumor post-RT to understand the molecular mechanisms of their resistance to ICB.
Methods: Single-cell RNA-sequencing (scRNA-seq) was used to profile senescent cancer cell clusters induced by RT in LNCaP cells. The expression and phosphorylation levels of ataxia telangiectasia and Rad3-related protein (ATR) were assessed by immunohistochemistry in clinical samples from patients with or without RT. Co-immunoprecipitation, mutagenesis, and Western blotting were used to measure the interactions between proteins. Xenograft experiments were performed to assess the tumor immune response in the mice.
Results: We identified a subset of PCa cells that exhibited resistance to RT, characterized by a reduced antigen presentation capability, which enhanced their ability to evade immune detection and resist cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockade. scRNA-seq revealed that the senescent state was a transient phase of PCa cells post-RT, particularly in CTLA-4 blockade treatment-resistant cells. This state was marked by increased cytosolic ATR level. Cytosolic ATR phosphorylated CD86 in its cytosolic domain and enhanced the interaction between CD86 and its E3 ligase MARCH1 through electrostatic attraction. Depletion or inhibition of Atr increased the sensitivity to immune attack and improved responses to anti-Ctla-4 antibody treatment in a mouse model.
Conclusions: Our findings indicate that the activation of cytosolic ATR, which is associated with cellular senescence, impedes the effectiveness of combined RT and ICB treatments. This discovery may provide valuable insights for improving the efficacy of combined RT and ICB therapies in PCa.
Background: Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive. This study aimed to explore the molecular orchestration of SCD and FADS2 and their specific reprogramming mechanisms in response to cancer progression.
Methods: The potential interactions between SCD and FADS2 were explored by bioinformatics analyses across multiple cancer cohorts, which guided subsequent functional and mechanistic investigations. The expression levels of desaturases were investigated with online datasets and validated in both cancer tissues and cell lines. Specific desaturation activities were characterized through various isomer-resolved lipidomics methods and sensitivity assays using desaturase inhibitors. In-situ lipid profiling was conducted using multiplex stimulated Raman scattering imaging. Functional assays were performed both in vitro and in vivo, with RNA-sequencing employed for the mechanism verification.
Results: After integration of the RNA-protein-metabolite levels, the data revealed that a reprogramming from SCD-dependent to FADS2-dependent desaturation was linked to cancer epithelial-mesenchymal transition (EMT) and progression in both patients and cell lines. FADS2 overexpression and SCD suppression concurrently maintained EMT plasticity. A FADS2/β-catenin self-reinforcing feedback loop facilitated the degree of lipid unsaturation, membrane fluidity, metastatic potential and EMT signaling. Moreover, SCD inhibition triggered a lethal apoptosis but boosted survival plasticity by inducing EMT and enhancing FA uptake via adenosine monophosphate-activated protein kinase activation. Notably, this desaturation reprogramming increased transforming growth factor-β2, effectively sustaining aggressive phenotypes and metabolic plasticity during EMT.
Conclusions: These findings revealed a metabolic reprogramming from SCD-dependent to FADS2-dependent desaturation during cancer EMT and progression, which concurrently supports EMT plasticity. Targeting desaturation reprogramming represents a potential vulnerability for cancer metabolic therapy.
Esophageal cancer (EC) continues to be a significant global health concern, with two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Prevention and changes in etiology, improvements in early detection, and refinements in the treatment have led to remarkable progress in the outcomes of EC patients in the past two decades. This seminar provides an in-depth analysis of advances in the epidemiology, disease biology, screening, diagnosis, and treatment landscape of esophageal cancer, focusing on the ongoing debate surrounding multimodality therapy. Despite significant advancements, EC remains a deadly disease, underscoring the need for continued research into early detection methods, understanding the molecular mechanisms, and developing effective treatments.
The 2024 updates of the Chinese Society of Clinical Oncology (CSCO) Clinical Guidelines for the diagnosis and treatment of colorectal cancer emphasize standardizing cancer treatment in China, highlighting the latest advancements in evidence-based medicine, healthcare resource access, and precision medicine in oncology. These updates address disparities in epidemiological trends, clinicopathological characteristics, tumor biology, treatment approaches, and drug selection for colorectal cancer patients across diverse regions and backgrounds. Key revisions include adjustments to evidence levels for intensive treatment strategies, updates to regimens for deficient mismatch repair (dMMR)/ microsatellite instability-high (MSI-H) patients, proficient mismatch repair (pMMR)/ microsatellite stability (MSS) patients who have failed standard therapies, and rectal cancer patients with low recurrence risk. Additionally, recommendations for digital rectal examination and DNA polymerase epsilon (POLE)/ DNA polymerase delta 1 (POLD1) gene mutation testing have been strengthened. The 2024 CSCO Guidelines are based on both Chinese and international clinical research, as well as expert consensus, ensuring their relevance and applicability in clinical practice, while maintaining a commitment to scientific rigor, impartiality, and timely updates.