Ubiquitination in cancer: mechanisms and therapeutic opportunities

Susi Zhu , Xu Zhang , Waner Liu , Zhe Zhou , Siyu Xiong , Jie Li , Xiang Chen , Cong Peng

Cancer Communications ›› 2025, Vol. 45 ›› Issue (9) : 1128 -1161.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (9) : 1128 -1161. DOI: 10.1002/cac2.70044
REVIEW

Ubiquitination in cancer: mechanisms and therapeutic opportunities

Author information +
History +
PDF

Abstract

Ubiquitination, a key post-translational modification, plays an essential role in tumor biology by regulating fundamental cellular processes, such as metabolism and cell death. Additionally, it interacts with other post-translational modifications, which are closely linked to tumorigenesis, tumor progression, the tumor microenvironment, and the response to therapeutic interventions. Recent advancements in understanding the ubiquitination mechanisms have led to significant breakthroughs, offering novel perspectives and strategies for diagnosing and treating tumors. Here, we provided an overview of how ubiquitination influences tumor biology, focusing on its roles in immune regulation, metabolism, and its interactions with other modifications. We also summarized the clinical potential of targeting E3 ubiquitin ligases and deubiquitinases as therapeutic strategies in cancer treatment.

Keywords

Ubiquitination / tumor microenvironment / cell death / metabolism / therapeutic opportunities

Cite this article

Download citation ▾
Susi Zhu, Xu Zhang, Waner Liu, Zhe Zhou, Siyu Xiong, Jie Li, Xiang Chen, Cong Peng. Ubiquitination in cancer: mechanisms and therapeutic opportunities. Cancer Communications, 2025, 45(9): 1128-1161 DOI:10.1002/cac2.70044

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41(3): 374-403.

[2]

Somarelli JA, Gardner H, Cannataro VL, Gunady EF, Boddy AM, Johnson NA, et al. Molecular Biology and Evolution of Cancer: From Discovery to Action. Mol Biol Evol. 2020; 37(2): 320-6.

[3]

Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling. J Cell Biol. 2019; 218(6): 1776-86.

[4]

Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer. 2024; 23(1): 148.

[5]

Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A. 1975; 72(1): 11-5.

[6]

Ciehanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun. 1978; 81(4): 1100-5.

[7]

Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A. 1980; 77(4): 1783-6.

[8]

Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci U S A. 1979; 76(7): 3107-10.

[9]

Grillari J, Katinger H, Voglauer R. Aging and the ubiquitinome: traditional and non-traditional functions of ubiquitin in aging cells and tissues. Exp Gerontol. 2006; 41(11): 1067-79.

[10]

Hershko A, Ciechanover A, Rose IA. Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem. 1981; 256(4): 1525-8.

[11]

Ciechanover A, Elias S, Heller H, Hershko A. “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem. 1982; 257(5): 2537-42.

[12]

Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983; 258(13): 8206-14.

[13]

Haas AL, Warms JV, Hershko A, Rose IA. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem. 1982; 257(5): 2543-8.

[14]

Hershko A, Heller H, Eytan E, Reiss Y. The protein substrate binding site of the ubiquitin-protein ligase system. J Biol Chem. 1986; 261(26): 11992-9.

[15]

Ciechanover A, Finley D, Varshavsky A. The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J Cell Biochem. 1984; 24(1): 27-53.

[16]

Ciechanover A, Finley D, Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell. 1984; 37(1): 57-66.

[17]

Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993; 75(3): 495-505.

[18]

Park KC, Woo SK, Yoo YJ, Wyndham AM, Baker RT, Chung CH. Purification and characterization of UBP6, a new ubiquitin-specific protease in Saccharomyces cerevisiae. Arch Biochem Biophys. 1997; 347(1): 78-84.

[19]

Save V, Nylander K, Hall PA. Why is p53 protein stabilized in neoplasia? Some answers but many more questions? J Pathol. 1998; 184(4): 348-50.

[20]

Yasugi T, Howley PM. Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res. 1996; 24(11): 2005-10.

[21]

Zheng N. A closer look of the HECTic ubiquitin ligases. Structure. 2003; 11(1): 5-6.

[22]

Worthylake DK, Prakash S, Prakash L, Hill CP. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution. J Biol Chem. 1998; 273(11): 6271-6.

[23]

Karigar CS, Murthy KRS. The Nobel Prize in Chemistry 2004. Resonance. 2005; 10(1): 41-9.

[24]

Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011; 471(7340): 591-6.

[25]

Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, et al. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 2012; 48(5): 771-84.

[26]

Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res. 2016; 26(4): 457-83.

[27]

Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, et al. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia. 2018; 32(2): 343-52.

[28]

Zhang X, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia. 2018; 32(10): 2224-39.

[29]

Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, et al. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer. 2024; 23(1): 88.

[30]

Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018; 46(10): 5195-208.

[31]

Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016; 26(4): 399-422.

[32]

Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther. 2021; 6(1): 16.

[33]

Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016; 18(6): 579-86.

[34]

Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, et al. Deubiquitylating Enzymes in Cancer and Immunity. Adv Sci (Weinh). 2023; 10(36): e2303807.

[35]

Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet. 2024; 143(4): 511-27.

[36]

Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023; 24(4): 273-87.

[37]

Tracz M, Bialek W. Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett. 2021; 26(1): 1.

[38]

Mallette FA, Richard S. K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites. Cell Res. 2012; 22(8): 1221-3.

[39]

Wang G, Zhuang Z, Shen S, Yang F, Jiang Z, Liu Z, et al. Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Hum Cell. 2022; 35(3): 896-908.

[40]

Xia T, Meng L, Xu G, Sun H, Chen H. TRIM33 promotes glycolysis through regulating P53 K48-linked ubiquitination to promote esophageal squamous cell carcinoma growth. Cell Death Dis. 2024; 15(10): 740.

[41]

Cao L, Liu X, Zheng B, Xing C, Liu J. Role of K63-linked ubiquitination in cancer. Cell Death Discov. 2022; 8(1): 410.

[42]

Jahan AS, Elbæk CR, Damgaard RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ. 2021; 28(2): 473-92.

[43]

Morris JR, Solomon E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet. 2004; 13(8): 807-17.

[44]

Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A. 2015; 112(21): 6637-42.

[45]

Yang Y, Zhu Y, Zhou S, Tang P, Xu R, Zhang Y, et al. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis. Embo J. 2022; 41(14): e109777.

[46]

Lei CQ, Wu X, Zhong X, Jiang L, Zhong B, Shu HB. USP19 Inhibits TNF-α- and IL-1β-Triggered NF-κB Activation by Deubiquitinating TAK1. J Immunol. 2019; 203(1): 259-68.

[47]

Zhang X, Han L, Hou J, Yang H, Xu H, Li G, et al. Stress granule-localized USP8 potentiates cGAS-mediated type I interferonopathies through deubiquitination of DDX3X. Cell Rep. 2024; 43(6): 114248.

[48]

Jia Y, Li F, Liu Z, Liu S, Huang M, Gao X, et al. Interaction between the SFTSV envelope glycoprotein Gn and STING inhibits the formation of the STING-TBK1 complex and suppresses the NF-κB signaling pathway. J Virol. 2024; 98(3): e0181523.

[49]

Mori Y, Akizuki Y, Honda R, Takao M, Tsuchimoto A, Hashimoto S, et al. Intrinsic signaling pathways modulate targeted protein degradation. Nat Commun. 2024; 15(1): 5379.

[50]

Celada SI, Li G, Celada LJ, Lu W, Kanagasabai T, Feng W, et al. Lysosome-dependent FOXA1 ubiquitination contributes to luminal lineage of advanced prostate cancer. Mol Oncol. 2023; 17(10): 2126-46.

[51]

Yuan WC, Lee YR, Lin SY, Chang LY, Tan YP, Hung CC, et al. K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol Cell. 2014; 54(4): 586-600.

[52]

Niu K, Fang H, Chen Z, Zhu Y, Tan Q, Wei D, et al. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Autophagy. 2020; 16(4): 724-34.

[53]

Lui WY, Bharti A, Wong NM, Jangra S, Botelho MG, Yuen KS, et al. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog. 2023; 19(2): e1011186.

[54]

Pao KC, Wood NT, Knebel A, Rafie K, Stanley M, Mabbitt PD, et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature. 2018; 556(7701): 381-5.

[55]

van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM, et al. A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol. 2009; 5: 295.

[56]

Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009; 78: 399-434.

[57]

Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol. 2021; 9: 706997.

[58]

Qian H, Zhang Y, Wu B, Wu S, You S, Zhang N, et al. Structure and Function of HECT E3 Ubiquitin Ligases and their Role in Oxidative Stress. J Transl Int Med. 2020; 8(2): 71-9.

[59]

Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci. 2018; 75(17): 3121-41.

[60]

Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020; 67(Pt 2): 131-44.

[61]

Cai C, Tang YD, Zhai J, Zheng C. The RING finger protein family in health and disease. Signal Transduct Target Ther. 2022; 7(1): 300.

[62]

Li C, Guan W, Geng D, Feng Y. RNF112, whose transcription is regulated by KLF4, inhibits colorectal cancer growth via promoting ubiquitin-dependent degradation of NAA40. Cell Biol Toxicol. 2025; 41(1): 22.

[63]

Chen X, Su W, Chen J, Ouyang P, Gong J. RNF123 inhibits cell viability, cell cycle and colony formation of breast cancer by inhibiting glycolysis via ubiquitination of PFKP. Naunyn Schmiedebergs Arch Pharmacol. 2025; 398(6): 7219-33.

[64]

Xu H, Yin Q, Fan L, Zhao Y, Song B, Xu Q, et al. RNF138 contributes to cisplatin resistance in nasopharyngeal carcinoma cells. Sci Rep. 2025; 15(1): 1406.

[65]

Zhu D, Nie Y, Zhao Y, Chen X, Yang Z, Yang Y. RNF152 Suppresses Fatty Acid Oxidation and Metastasis of Lung Adenocarcinoma by Inhibiting IRAK1-Mediated AKR1B10 Expression. Am J Pathol. 2023; 193(10): 1603-17.

[66]

Zeng X, Tang X, Chen X, Wen H. RNF182 induces p65 ubiquitination to affect PDL1 transcription and suppress immune evasion in lung adenocarcinoma. Immun Inflamm Dis. 2023; 11(5): e864.

[67]

Seo SU, Woo SM, Im SS, Jang Y, Han E, Kim SH, et al. Cathepsin D as a potential therapeutic target to enhance anticancer drug-induced apoptosis via RNF183-mediated destabilization of Bcl-xL in cancer cells. Cell Death Dis. 2022; 13(2): 115.

[68]

Seo SU, Woo SM, Min KJ, Kwon TK. Itch and autophagy-mediated NF-κB activation contributes to inhibition of cathepsin D-induced sensitizing effect on anticancer drugs. Cell Death Dis. 2022; 13(6): 552.

[69]

Ji Y, Tu X, Hu X, Wang Z, Gao S, Zhang Q, et al. The role and mechanism of action of RNF186 in colorectal cancer through negative regulation of NF-κB. Cell Signal. 2020; 75: 109764.

[70]

Okamoto T, Imaizumi K, Kaneko M. The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. Int J Mol Sci. 2020; 21(11): 3921.

[71]

Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol. 2019; 10: 1144.

[72]

Wu K, DeVita RJ, Pan ZQ. Modulation of Cullin-RING E3 ubiquitin ligase-dependent ubiquitination by small molecule compounds. J Biol Chem. 2024; 300(3): 105752.

[73]

Ma Y, Huang X, Wang Y, Lei Y, Yu J, Yu S, et al. NNMT/1-MNA Promote Cell-Cycle Progression of Breast Cancer by Targeting UBC12/Cullin-1-Mediated Degradation of P27 Proteins. Adv Sci (Weinh). 2024; 11(9): e2305907.

[74]

Trejo-Cerro O, Massimi P, Broniarczyk J, Myers M, Banks L. Repression of Memo1, a Novel Target of Human Papillomavirus Type 16 E7, Increases Cell Proliferation in Cervical Cancer Cells. J Virol. 2022; 96(20): e0122922.

[75]

Song Y, Wang X, Sun Y, Yu N, Tian Y, Han J, et al. PRDX1 inhibits ferroptosis by binding to Cullin-3 as a molecular chaperone in colorectal cancer. Int J Biol Sci. 2024; 20(13): 5070-86.

[76]

Claridge SE, Nath S, Baum A, Farias R, Cavallo JA, Rizvi NM, et al. Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer. Clin Transl Med. 2025; 15(2): e70078.

[77]

Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, et al. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8(+) T cells. Nat Commun. 2024; 15(1): 603.

[78]

Chen S, Shao F, Zeng J, Guo S, Wang L, Sun H, et al. Cullin-5 deficiency orchestrates the tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling. Sci Adv. 2023; 9(3): eabq1395.

[79]

Xu J, Zhang Z, Qian M, Wang S, Qiu W, Chen Z, et al. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. J Exp Clin Cancer Res. 2020; 39(1): 59.

[80]

Yang L, WenTao T, ZhiYuan Z, Qi L, YuXiang L, Peng Z, et al. Cullin-9/p53 mediates HNRNPC degradation to inhibit erastin-induced ferroptosis and is blocked by MDM2 inhibition in colorectal cancer. Oncogene. 2022; 41(23): 3210-21.

[81]

Wang Z, Kang W, Li O, Qi F, Wang J, You Y, et al. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharm Sin B. 2021; 11(3): 694-707.

[82]

Li C, Xia J, Franqui-Machin R, Chen F, He Y, Ashby TC, et al. TRIP13 modulates protein deubiquitination and accelerates tumor development and progression of B cell malignancies. J Clin Invest. 2021; 131(14): e146893.

[83]

He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, et al. The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem. 2021; 297(3): 101088.

[84]

Liu J, Wang H, Wan H, Yang J, Gao L, Wang Z, et al. NEK6 dampens FOXO3 nuclear translocation to stabilize C-MYC and promotes subsequent de novo purine synthesis to support ovarian cancer chemoresistance. Cell Death Dis. 2024; 15(9): 661.

[85]

Chen KL, Huang SW, Yao JJ, He SW, Gong S, Tan XR, et al. LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein. Drug Resist Updat. 2024; 76: 101111.

[86]

Schiefer S, Hale BG. Proximal protein landscapes of the type I interferon signaling cascade reveal negative regulation by PJA2. Nat Commun. 2024; 15(1): 4484.

[87]

Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, et al. Trim21-mediated CCT2 ubiquitination suppresses malignant progression and promotes CD4(+)T cell activation in breast cancer. Cell Death Dis. 2024; 15(7): 542.

[88]

Gonzalez-Santamarta M, Bouvier C, Rodriguez MS, Xolalpa W. Ubiquitin-chains dynamics and its role regulating crucial cellular processes. Semin Cell Dev Biol. 2022; 132: 155-70.

[89]

Taherbhoy AM, Schulman BA, Kaiser SE. Ubiquitin-like modifiers. Essays Biochem. 2012; 52: 51-63.

[90]

Wang T, Jiang J, Zhang X, Ke X, Qu Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol Med. 2024; 30(11): 1061-75.

[91]

Truongvan N, Li S, Misra M, Kuhn M, Schindelin H. Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat Commun. 2022; 13(1): 4789.

[92]

Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018; 16(7): 423-39.

[93]

Kito K, Yeh ET, Kamitani T. NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J Biol Chem. 2001; 276(23): 20603-9.

[94]

Barry J, Lock RB. Small ubiquitin-related modifier-1: Wrestling with protein regulation. Int J Biochem Cell Biol. 2011; 43(1): 37-40.

[95]

Banerjee S, Kumar M, Wiener R. Decrypting UFMylation: How Proteins Are Modified with UFM1. Biomolecules. 2020; 10(10): 1442.

[96]

Zhang X, Chen XL. The emerging roles of ubiquitin-like protein Urm1 in eukaryotes. Cell Signal. 2021; 81: 109946.

[97]

Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997; 88(1): 97-107.

[98]

Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, et al. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics. 2024; 14(8): 3127-49.

[99]

Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol. 2025; 62(3): 3305-21.

[100]

Feng YC, Liu XY, Teng L, Ji Q, Wu Y, Li JM, et al. c-MYC inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat Commun. 2020; 11(1): 4980.

[101]

Feng YC, Zhao XH, Teng L, Thorne RF, Jin L, Zhang XD. The pan-cancer lncRNA MILIP links c-MYC to p53 repression. Mol Cell Oncol. 2020; 8(1): 1842714.

[102]

Ryu H, Al-Ani G, Deckert K, Kirkpatrick D, Gygi SP, Dasso M, et al. PIASy mediates SUMO-2/3 conjugation of poly(ADP-ribose) polymerase 1 (PARP1) on mitotic chromosomes. J Biol Chem. 2010; 285(19): 14415-23.

[103]

Sridharan V, Park H, Ryu H, Azuma Y. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis. J Biol Chem. 2015; 290(6): 3269-76.

[104]

Rinfret Robert C, McManus FP, Lamoliatte F, Thibault P. Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment. J Proteome Res. 2020; 19(5): 1999-2010.

[105]

Fan W, Cai W, Parimoo S, Schwarz DC, Lennon GG, Weissman SM. Identification of seven new human MHC class I region genes around the HLA-F locus. Immunogenetics. 1996; 44(2): 97-103.

[106]

Aichem A, Pelzer C, Lukasiak S, Kalveram B, Sheppard PW, Rani N, et al. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nat Commun. 2010; 1: 13.

[107]

Kamitani T, Kito K, Nguyen HP, Yeh ET. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 1997; 272(45): 28557-62.

[108]

Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 2003; 17(4): 455-60.

[109]

Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci. 2017; 130(18): 2961-9.

[110]

Jin T, Yang L, Chang C, Luo H, Wang R, Gan Y, et al. HnRNPA2B1 ISGylation Regulates m6A-Tagged mRNA Selective Export via ALYREF/NXF1 Complex to Foster Breast Cancer Development. Adv Sci (Weinh). 2024; 11(24): e2307639.

[111]

Goehring AS, Rivers DM, Sprague GF, Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell. 2003; 14(11): 4329-41.

[112]

Wang F, Liu M, Qiu R, Ji C. The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier. Protein Cell. 2011; 2(8): 612-9.

[113]

Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. Embo j. 2004; 23(9): 1977-86.

[114]

Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol. 2020; 22(9): 1056-63.

[115]

Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol. 2025; 13: 1523958.

[116]

Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett. 2024; 29(1): 107.

[117]

Liu X, Zhang Y, Wang Y, Yang M, Hong F, Yang S. Protein Phosphorylation in Cancer: Role of Nitric Oxide Signaling Pathway. Biomolecules. 2021; 11(7): 1009.

[118]

Houles T, Yoon SO, Roux PP. The expanding landscape of canonical and non-canonical protein phosphorylation. Trends Biochem Sci. 2024; 49(11): 986-99.

[119]

Li M, Shao X, Ning Q, Sun R, Li R, Liu Y, et al. Downregulation of WNK4 expression facilitates the proliferation of gastric cancer cells via activation of the STAT3 signaling pathway. Neoplasma. 2024; 71(3): 209-18.

[120]

Zhao X, Lai G, Tu J, Liu S, Zhao Y. Crosstalk between phosphorylation and ubiquitination is involved in high salt-induced WNK4 expression. Exp Ther Med. 2021; 21(2): 133.

[121]

Wang W, Li Y, Tang L, Shi Y, Li W, Zou L, et al. Cross-talk between BCKDK-mediated phosphorylation and STUB1-dependent ubiquitination degradation of BCAT1 promotes GBM progression. Cancer Lett. 2024; 591: 216849.

[122]

Huang Y, Liu S, Shan M, Hagenaars SC, Mesker WE, Cohen D, et al. RNF12 is regulated by AKT phosphorylation and promotes TGF-β driven breast cancer metastasis. Cell Death Dis. 2022; 13(1): 44.

[123]

Chen S, Pan C, Huang J, Liu T. ATR limits Rad18-mediated PCNA monoubiquitination to preserve replication fork and telomerase-independent telomere stability. Embo j. 2024; 43(7): 1301-24.

[124]

Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell. 2021; 184(16): 4348-71.e40.

[125]

Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022; 23(5): 329-49.

[126]

Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, et al. Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity. Mol Cell Biol. 2017; 37(6): e00401-16.

[127]

Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol. 2022; 85: 209-18.

[128]

Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008; 31(4): 449-61.

[129]

Lei MZ, Li XX, Zhang Y, Li JT, Zhang F, Wang YP, et al. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther. 2020; 5(1): 70.

[130]

Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019; 10(1): 4353.

[131]

Xie Q, Hu B, Li H. Acetylation- and ubiquitination-regulated SFMBT2 acts as a tumor suppressor in clear cell renal cell carcinoma. Biol Direct. 2024; 19(1): 37.

[132]

Kong Y, Ren W, Fang H, Shah NA, Shi Y, You D, et al. Histone Deacetylase Inhibitors (HDACi) Promote KLF5 Ubiquitination and Degradation in Basal-like Breast Cancer. Int J Biol Sci. 2022; 18(5): 2104-15.

[133]

Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J. 2017; 15: 307-19.

[134]

Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol. 2023; 17(1): 3-26.

[135]

Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019; 3(4): 306-17.

[136]

Zhang G, Jiang P, Tang W, Wang Y, Qiu F, An J, et al. CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity. Mol Cell. 2023; 83(23): 4370-85.e9.

[137]

Peng F, Lu J, Su K, Liu X, Luo H, He B, et al. Oncogenic fatty acid oxidation senses circadian disruption in sleep-deficiency-enhanced tumorigenesis. Cell Metab. 2024; 36(7): 1598-618.e11.

[138]

Wang Z, Wang Y, Shen N, Liu Y, Xu X, Zhu R, et al. AMPKα1-mediated ZDHHC8 phosphorylation promotes the palmitoylation of SLC7A11 to facilitate ferroptosis resistance in glioblastoma. Cancer Lett. 2024; 584: 216619.

[139]

Lu B, Sun YY, Chen BY, Yang B, He QJ, Li J, et al. zDHHC20-driven S-palmitoylation of CD80 is required for its costimulatory function. Acta Pharmacol Sin. 2024; 45(6): 1214-23.

[140]

Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011; 80: 825-58.

[141]

van der Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. Febs j. 2018; 285(17): 3152-67.

[142]

Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, et al. Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT. Adv Sci (Weinh). 2023; 10(33): e2302953.

[143]

Zhao J, Hua J, Zhan Y, Chen C, Liu Y, Yang L, et al. O-GlcNAcylation stimulates the deubiquitination activity of USP16 and regulates cell cycle progression. J Biol Chem. 2024; 300(4): 107150.

[144]

Zhou P, Chang WY, Gong DA, Huang LY, Liu R, Liu Y, et al. O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene. 2023; 42(10): 725-36.

[145]

Feng Z, Yin J, Zhang Z, Chen Z, Huang L, Tang N, et al. O-GlcNAcylation of E3 ubiquitin ligase SKP2 promotes hepatocellular carcinoma proliferation. Oncogene. 2024; 43(15): 1149-59.

[146]

Bian Z, Xu C, Wang X, Zhang B, Xiao Y, Liu L, et al. TRIM65/NF2/YAP1 Signaling Coordinately Orchestrates Metabolic and Immune Advantages in Hepatocellular Carcinoma. Adv Sci (Weinh). 2024; 11(35): e2402578.

[147]

Kweon TH, Jung H, Ko JY, Kang J, Kim W, Kim Y, et al. O-GlcNAcylation of RBM14 contributes to elevated cellular O-GlcNAc through regulation of OGA protein stability. Cell Rep. 2024; 43(5): 114163.

[148]

Li J, Liu X, Peng B, Feng T, Zhou W, Meng L, et al. O-GlcNAc has crosstalk with ADP-ribosylation via PARG. J Biol Chem. 2023; 299(11): 105354.

[149]

Yang Y, Yan Y, Yin J, Tang N, Wang K, Huang L, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an N(6)-methyladenosine-dependent manner. Signal Transduct Target Ther. 2023; 8(1): 63.

[150]

Xu L, Ye Y, Tao Z, Wang T, Wei Y, Cai W, et al. O-GlcNAcylation of melanophilin enhances radiation resistance in glioblastoma via suppressing TRIM21 mediated ubiquitination. Oncogene. 2024; 43(1): 61-75.

[151]

Du Y, Yang Z, Shi H, Chen Z, Chen R, Zhou F, et al. E3 ubiquitin ligase UBR5 promotes gemcitabine resistance in pancreatic cancer by inducing O-GlcNAcylation-mediated EMT via destabilization of OGA. Cell Death Dis. 2024; 15(5): 340.

[152]

Wang J, Wang Z, Wang Q, Li X, Guo Y. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett. 2024; 29(1): 23.

[153]

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574(7779): 575-80.

[154]

Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H, et al. Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity. J Cell Biol. 2024; 223(11): e202308099.

[155]

Li Q, Lin G, Zhang K, Liu X, Li Z, Bing X, et al. Hypoxia exposure induces lactylation of Axin1 protein to promote glycolysis of esophageal carcinoma cells. Biochem Pharmacol. 2024; 226: 116415.

[156]

Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 2024; 20(4): 1413-35.

[157]

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020; 368(6487): eaaw5473.

[158]

Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012; 21(3): 297-308.

[159]

Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023; 16(1): 103.

[160]

Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022; 13(12): 877-919.

[161]

Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023; 55(7): 1357-70.

[162]

Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020; 19(1): 146.

[163]

Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther. 2022; 7(1): 396.

[164]

Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol. 2022; 15(1): 120.

[165]

Lu Z, Wang XY, He KY, Han XH, Wang X, Zhang Z, et al. CHIP-mediated ubiquitin degradation of BCAT1 regulates glioma cell proliferation and temozolomide sensitivity. Cell Death Dis. 2024; 15(7): 538.

[166]

Chen S, Zhao L, Liu J, Han P, Jiang W, Liu Y, et al. Inhibition of KIF20A enhances the immunotherapeutic effect of hepatocellular carcinoma by enhancing c-MYC ubiquitination. Cancer Lett. 2024; 598: 217105.

[167]

Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-MYC signaling-mediated aerobic glycolysis. Cell Death Dis. 2020; 11(5): 381.

[168]

Zhao W, Ouyang C, Huang C, Zhang J, Xiao Q, Zhang F, et al. ELP3 stabilizes c-MYC to promote tumorigenesis. J Mol Cell Biol. 2024; 15(9): mjad059.

[169]

Wei W, Qin B, Wen W, Zhang B, Luo H, Wang Y, et al. FBXW7β loss-of-function enhances FASN-mediated lipogenesis and promotes colorectal cancer growth. Signal Transduct Target Ther. 2023; 8(1): 187.

[170]

Zhao S, Wang Q, Zhang X, Ma B, Shi Y, Yin Y, et al. MARCH5-mediated downregulation of ACC2 promotes fatty acid oxidation and tumor progression in ovarian cancer. Free Radic Biol Med. 2024; 212: 464-76.

[171]

Wang D, Xu C, Yang W, Chen J, Ou Y, Guan Y, et al. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression. Mol Cell. 2022; 82(4): 770-84.e9.

[172]

Geng C, Kaochar S, Li M, Rajapakshe K, Fiskus W, Dong J, et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene. 2017; 36(33): 4767-77.

[173]

Xu A, Li X, Cai Q, Yang C, Yang M, Gao H, et al. CircXPO6 promotes breast cancer progression through competitively inhibiting the ubiquitination degradation of c-Myc. Mol Cell Biochem. 2025; 480(3): 1731-45.

[174]

Ito H, Nakamae I, Kato JY, Yoneda-Kato N. Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development. J Clin Invest. 2021; 131(12): e141529.

[175]

Chen X, Li Z, Yong H, Wang W, Wang D, Chu S, et al. Trim21-mediated HIF-1α degradation attenuates aerobic glycolysis to inhibit renal cancer tumorigenesis and metastasis. Cancer Lett. 2021; 508: 115-26.

[176]

Gu L, Zhu Y, Lin X, Tan X, Lu B, Li Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene. 2020; 39(11): 2437-49.

[177]

Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 2021; 31(3): 291-311.

[178]

Zhao L, Yu N, Zhai Y, Yang Y, Wang Y, Yang Y, et al. The ubiquitin-like protein UBTD1 promotes colorectal cancer progression by stabilizing c-MYC to upregulate glycolysis. Cell Death Dis. 2024; 15(7): 502.

[179]

Yi X, Qi M, Huang M, Zhou S, Xiong J. Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth. Front Pharmacol. 2022; 13: 796763.

[180]

Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li M, et al. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma. Int J Biol Sci. 2022; 18(2): 522-35.

[181]

Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, et al. METTL5 stabilizes c-MYC by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond). 2023; 43(3): 338-64.

[182]

Qiao L, Hu W, Li L, Chen X, Liu L, Wang J. USP11 promotes glycolysis by regulating HIF-1α stability in hepatocellular carcinoma. J Cell Mol Med. 2024; 28(2): e18017.

[183]

Nelson JK, Thin MZ, Evan T, Howell S, Wu M, Almeida B, et al. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun. 2022; 13(1): 2070.

[184]

Han X, Ren C, Lu C, Jiang A, Wang X, Liu L, et al. Phosphorylation of USP27X by PIM2 promotes glycolysis and breast cancer progression via deubiquitylation of c-MYC. Oncogene. 2024; 43(33): 2493-503.

[185]

Cheng H, Hua L, Tang H, Bao Z, Xu X, Zhu H, et al. CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. J Mol Cell Biol. 2024; 15(10): mjad057.

[186]

Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology. 2011; 27: 441-64.

[187]

Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci. 2022; 292: 120322.

[188]

Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014; 4(6): a014241.

[189]

Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-MYC. J Biol Chem. 2000; 275(29): 21797-800.

[190]

Wilde BR, Ayer DE. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer. 2015; 113(11): 1529-33.

[191]

Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009; 15(21): 6479-83.

[192]

Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021; 599(1): 23-37.

[193]

Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014; 345(6204): 1250684.

[194]

Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer. 2020; 122(2): 150-6.

[195]

Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal. 2024; 22(1): 380.

[196]

Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, et al. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab. 2023; 35(12): 2216-30.e8.

[197]

Li JT, Yin M, Wang D, Wang J, Lei MZ, Zhang Y, et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat Cell Biol. 2020; 22(2): 167-74.

[198]

Patrick M, Gu Z, Zhang G, Wynn RM, Kaphle P, Cao H, et al. Metabolon formation regulates branched-chain amino acid oxidation and homeostasis. Nat Metab. 2022; 4(12): 1775-91.

[199]

Yue S, Li G, He S, Li T. The Central Role of mTORC1 in Amino Acid Sensing. Cancer Res. 2022; 82(17): 2964-74.

[200]

Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020; 5(1): 11.

[201]

Gauthier-Coles G, Bröer A, McLeod MD, George AJ, Hannan RD, Bröer S. Identification and characterization of a novel SNAT2 (SLC38A2) inhibitor reveals synergy with glucose transport inhibition in cancer cells. Front Pharmacol. 2022; 13: 963066.

[202]

Zhou Y, Chu P, Wang Y, Li N, Gao Q, Wang S, et al. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. Sci Adv. 2024; 10(33): eado1533.

[203]

Loix M, Zelcer N, Bogie JFJ, Hendriks JJA. The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol. 2024; 34(5): 416-29.

[204]

Zhang K, Yang C, Zhou X, Liang J, Guo J, Li M, et al. TRIM21 ameliorates hepatic glucose and lipid metabolic disorders in type 2 diabetes mellitus by ubiquitination of PEPCK1 and FASN. Cell Mol Life Sci. 2023; 80(6): 168.

[205]

Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al. Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metab. 2019; 29(1): 174-82.e5.

[206]

Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, et al. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol. 2024; 265(Pt 2): 130961.

[207]

Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017; 13(12): 710-30.

[208]

Feng T, Li S, Zhao G, Li Q, Yuan H, Zhang J, et al. DDX39B facilitates the malignant progression of hepatocellular carcinoma via activation of SREBP1-mediated de novo lipid synthesis. Cell Oncol (Dordr). 2023; 46(5): 1235-52.

[209]

Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, et al. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev. 2018; 39(5): 760-802.

[210]

Sun X, Tang H, Chen Y, Chen Z, Hu Z, Cui Z, et al. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. Nat Cancer. 2023; 4(5): 716-33.

[211]

Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, et al. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep. 2022; 39(9): 110879.

[212]

Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020; 11(2): 105.

[213]

Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol. 2023; 19(8): 443-59.

[214]

Cusenza VY, Bonora E, Amodio N, Frazzi R. Spartin: At the crossroad between ubiquitination and metabolism in cancer. Biochim Biophys Acta Rev Cancer. 2022; 1877(6): 188813.

[215]

Wang Y, Ran L, Lan Q, Liao W, Wang L, Wang Y, et al. Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. Kidney Int. 2023; 104(5): 956-74.

[216]

Xu J, Liu Z, Zhang J, Chen S, Wang W, Zhao X, et al. N-end Rule-Mediated Proteasomal Degradation of ATGL Promotes Lipid Storage. Diabetes. 2023; 72(2): 210-22.

[217]

Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol. 2012; 32(5): 1094-8.

[218]

Fang M, Liu X, Xu W, Wang X, Xu L, Zhao TJ, et al. Paxillin family proteins Hic-5 and LPXN promote lipid storage by regulating the ubiquitination degradation of CIDEC. J Biol Chem. 2024; 300(2): 105610.

[219]

Biray Avci C, Goker Bagca B, Nikanfar M, Takanlou LS, Takanlou MS, Nourazarian A. Tumor microenvironment and cancer metastasis: molecular mechanisms and therapeutic implications. Front Pharmacol. 2024; 15: 1442888.

[220]

Yang M, Chen T, Li X, Yu Z, Tang S, Wang C, et al. K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8(+) T cell activation. Nat Immunol. 2015; 16(12): 1253-62.

[221]

Radhakrishnan D, Kotulová J, Hofmanová L, Sithara AA, Turi M, Žihala D, et al. Deubiquitinase BAP1 is crucial for surface expression of T cell receptor (TCR) complex, T cell-B cell conjugate formation, and T cell activation. J Leukoc Biol. 2024; 117(1): qiae184.

[222]

Park SH, Lee J, Yun HJ, Kim SH, Lee JH. Metformin Suppresses Both PD-L1 Expression in Cancer Cells and Cancer-Induced PD-1 Expression in Immune Cells to Promote Antitumor Immunity. Ann Lab Med. 2024; 44(5): 426-36.

[223]

Zhao C, Zhao JW, Zhang YH, Zhu YD, Yang ZY, Liu SL, et al. PTBP3 Mediates IL-18 Exon Skipping to Promote Immune Escape in Gallbladder Cancer. Adv Sci (Weinh). 2024; e2406633.

[224]

Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 2018; 564(7734): 130-5.

[225]

Li X, Zhai J, Shen Y, Zhang T, Wang Y, He Y, et al. Tumor-derived IL-8 facilitates lymph node metastasis of gastric cancer via PD-1 up-regulation in CD8(+) T cells. Cancer Immunol Immunother. 2022; 71(12): 3057-70.

[226]

Liu R, Zeng LW, Li HF, Shi JG, Zhong B, Shu HB, et al. PD-1 signaling negatively regulates the common cytokine receptor γ chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res. 2023; 33(12): 923-39.

[227]

Qin R, Zhao C, Wang CJ, Xu W, Zhao JY, Lin Y, et al. Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer. 2021; 9(7): e002840.

[228]

Zhou XA, Zhou J, Zhao L, Yu G, Zhan J, Shi C, et al. KLHL22 maintains PD-1 homeostasis and prevents excessive T cell suppression. Proc Natl Acad Sci U S A. 2020; 117(45): 28239-50.

[229]

Chen Y, Gao J, Ma M, Wang K, Liu F, Yang F, et al. The potential role of CMC1 as an immunometabolic checkpoint in T cell immunity. Oncoimmunology. 2024; 13(1): 2344905.

[230]

Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev. 2021; 101(1): 147-76.

[231]

Mezawa Y, Orimo A. Phenotypic heterogeneity, stability and plasticity in tumor-promoting carcinoma-associated fibroblasts. Febs J. 2022; 289(9): 2429-47.

[232]

Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, et al. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol. 2024; 17(1): 80.

[233]

Jurisic A, Sung PJ, Wappett M, Daubriac J, Lobb IT, Kung WW, et al. USP7 inhibitors suppress tumour neoangiogenesis and promote synergy with immune checkpoint inhibitors by downregulating fibroblast VEGF. Clin Transl Med. 2024; 14(4): e1648.

[234]

Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, et al. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer. 2022; 21(1): 24.

[235]

Fan G, Yu B, Tang L, Zhu R, Chen J, Zhu Y, et al. TSPAN8(+) myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med. 2024; 16(741): eadj5705.

[236]

Lu Y, Jin Z, Hou J, Wu X, Yu Z, Yao L, et al. Calponin 1 increases cancer-associated fibroblasts-mediated matrix stiffness to promote chemoresistance in gastric cancer. Matrix Biol. 2023; 115: 1-15.

[237]

Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, et al. cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature. 2020; 584(7822): 624-9.

[238]

Meng H, Li L, Nan M, Ding Y, Li Y, Zhang M. ZG16 enhances the maturation of dendritic cells via induction of CD40 and contributes to the antitumor immunity in pancreatic cancer. Oncogene. 2024; 43(43): 3184-96.

[239]

Henry CM, Castellanos CA, Buck MD, Giampazolias E, Frederico B, Cardoso A, et al. SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells. Cell Rep. 2023; 42(12): 113506.

[240]

Zhao X, Wei Y, Chu YY, Li Y, Hsu JM, Jiang Z, et al. Phosphorylation and Stabilization of PD-L1 by CK2 Suppresses Dendritic Cell Function. Cancer Res. 2022; 82(11): 2185-95.

[241]

Kim HJ, Bandola-Simon J, Ishido S, Wong NW, Koparde VN, Cam M, et al. Ubiquitination of MHC Class II by March-I Regulates Dendritic Cell Fitness. J Immunol. 2021; 206(3): 494-504.

[242]

Walseng E, Furuta K, Bosch B, Weih KA, Matsuki Y, Bakke O, et al. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells. Proc Natl Acad Sci U S A. 2010; 107(47): 20465-70.

[243]

Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity. 2021; 54(5): 859-74.

[244]

Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer. 2024; 23(1): 150.

[245]

Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022; 23(8): 1148-56.

[246]

Shi JH, Liu LN, Song DD, Liu WW, Ling C, Wu FX, et al. TRAF3/STAT6 axis regulates macrophage polarization and tumor progression. Cell Death Differ. 2023; 30(8): 2005-16.

[247]

Zhang C, Wei S, Dai S, Li X, Wang H, Zhang H, et al. The NR_109/FUBP1/c-MYC axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development. J Immunother Cancer. 2023; 11(5): e006230.

[248]

Zhang R, Shen Y, Zhang Q, Feng X, Liu X, Huo X, et al. TRIM21-mediated Sohlh2 ubiquitination suppresses M2 macrophage polarization and progression of triple-negative breast cancer. Cell Death Dis. 2023; 14(12): 850.

[249]

Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, et al. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-MYC. Aging (Albany NY). 2020; 12(23): 24394-423.

[250]

Gao Z, Li Y, Wang F, Huang T, Fan K, Zhang Y, et al. Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat Commun. 2017; 8(1): 1805.

[251]

Xiao J, Sun F, Wang YN, Liu B, Zhou P, Wang FX, et al. UBC9 deficiency enhances immunostimulatory macrophage activation and subsequent antitumor T cell response in prostate cancer. J Clin Invest. 2023; 133(4): e158352.

[252]

Sun G, Liu H, Zhao J, Zhang J, Huang T, Sun G, et al. Macrophage GSK3β-deficiency inhibits the progression of hepatocellular carcinoma and enhances the sensitivity of anti-PD1 immunotherapy. J Immunother Cancer. 2022; 10(12): e005655.

[253]

Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol. 2024; 21(5): 337-53.

[254]

Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol. 2019; 16(6): 356-71.

[255]

Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017; 27(1): 109-18.

[256]

Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity. 2019; 50(2): 302-16.

[257]

Ni X, Kou W, Gu J, Wei P, Wu X, Peng H, et al. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. Embo j. 2019; 38(9): e99766.

[258]

van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013; 39(2): 259-71.

[259]

Li Y, Lu Y, Wang S, Han Z, Zhu F, Ni Y, et al. USP21 prevents the generation of T-helper-1-like Treg cells. Nat Commun. 2016; 7: 13559.

[260]

Guo J, Zhao J, Fu W, Xu Q, Huang D. Immune Evasion and Drug Resistance Mediated by USP22 in Cancer: Novel Targets and Mechanisms. Front Immunol. 2022; 13: 918314.

[261]

Montauti E, Weinberg SE, Chu P, Chaudhuri S, Mani NL, Iyer R, et al. A deubiquitination module essential for T(reg) fitness in the tumor microenvironment. Sci Adv. 2022; 8(47): eabo4116.

[262]

Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020; 21(9): e50308.

[263]

Lu W, Chu P, Tang A, Si L, Fang D. The secoiridoid glycoside Gentiopicroside is a USP22 inhibitor with potent antitumor immunotherapeutic activity. Biomed Pharmacother. 2024; 177: 116974.

[264]

Zhu X, Wang P, Zhan X, Zhang Y, Sheng J, He S, et al. USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ. Cell Mol Immunol. 2023; 20(3): 252-63.

[265]

Yu T, Yang X, Fu Q, Liang J, Wu X, Sheng J, et al. TRIM11 attenuates Treg cell differentiation by p62-selective autophagic degradation of AIM2. Cell Rep. 2023; 42(10): 113231.

[266]

Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen J, et al. Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun. 2022; 13(1): 3419.

[267]

Wang A, Huang H, Shi JH, Yu X, Ding R, Zhang Y, et al. USP47 inhibits m6A-dependent c-MYC translation to maintain regulatory T cell metabolic and functional homeostasis. J Clin Invest. 2023; 133(23): e169365.

[268]

Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, et al. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol. 2024; 13(1): 39.

[269]

Zhan X, He Q, Sheng J, Jiang X, Lin L, Huang Y, et al. USP12 positively regulates M-MDSC function to inhibit antitumour immunity through deubiquitinating and stabilizing p65. Immunology. 2022; 167(4): 544-57.

[270]

Song G, Zhang Y, Tian J, Ma J, Yin K, Xu H, et al. TRAF6 Regulates the Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Tumor-Bearing Host. Front Immunol. 2021; 12: 649020.

[271]

Huang X, Zuo Y, Wang X, Wu X, Tan H, Fan Q, et al. SUMO-Specific Protease 1 Is Critical for Myeloid-Derived Suppressor Cell Development and Function. Cancer Res. 2019; 79(15): 3891-902.

[272]

Liu JL, Xu X, Rixiati Y, Wang CY, Ni HL, Chen WS, et al. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells. Cell Metab. 2024; 36(6): 1320-34.e9.

[273]

Lu W, Cao F, Feng L, Song G, Chang Y, Chu Y, et al. LncRNA Snhg6 regulates the differentiation of MDSCs by regulating the ubiquitination of EZH2. J Hematol Oncol. 2021; 14(1): 196.

[274]

Zhao B, Wu J, Cha X, Mao G, Shi H, Fei S, et al. Effect of COP1 in Promoting the Tumorigenesis of Gastric Cancer by Down-Regulation of CDH18 via PI3K/AKT Signal Pathway. Anal Cell Pathol (Amst). 2023; 2023: 5617875.

[275]

Ouyang M, Wang H, Ma J, W, Li J, Yao C, et al. COP1, the negative regulator of ETV1, influences prognosis in triple-negative breast cancer. BMC Cancer. 2015; 15: 132.

[276]

Zhang L, Chen J, Yong J, Qiao L, Xu L, Liu C. An essential role of RNF187 in Notch1 mediated metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res. 2019; 38(1): 384.

[277]

Tang F, Lu C, He X, Lin W, Xie B, Gao X, et al. E3 ligase Trim35 inhibits LSD1 demethylase activity through K63-linked ubiquitination and enhances anti-tumor immunity in NSCLC. Cell Reports. 2023; 42(12): 113477.

[278]

Tan X, Cao F, Tang F, Lu C, Yu Q, Feng S, et al. Suppression of DLBCL Progression by the E3 Ligase Trim35 Is Mediated by CLOCK Degradation and NK Cell Infiltration. J Immunol Res. 2021; 2021: 9995869.

[279]

Vu T, Wang Y, Fowler A, Simieou A, McCarty N. TRIM44, a Novel Prognostic Marker, Supports the Survival of Proteasome-Resistant Multiple Myeloma Cells. Cells. 2024; 13(17): 1431.

[280]

Yuan W, Han J, Chen C, Qiu Y, Xu Y, Huang Y, et al. UBR1 is a prognostic biomarker and therapeutic target associated with immune cell infiltration in gastric cancer. Aging (Albany NY). 2024; 16(16): 12029-49.

[281]

Liao Y, Liang J, Wang Y, Li A, Liu W, Zhong B, et al. Target deubiquitinase OTUB1 as a therapeatic strategy for BLCA via β-catenin/necroptosis signal pathway. Int J Biol Sci. 2024; 20(10): 3784-801.

[282]

Liu L, Cheng H, Ji M, Su L, Lu Z, Hu X, et al. OTUB2 Regulates YAP1/TAZ to Promotes the Progression of Esophageal Squamous Cell Carcinoma. Biol Proced Online. 2022; 24(1): 10.

[283]

Ren W, Xu Z, Chang Y, Ju F, Wu H, Liang Z, et al. Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1. Nat Commun. 2024; 15(1): 9.

[284]

Zhou J, Nie H, Yang X, Wang F, Yu P, Yu Y, et al. Ubiquitin-Specific Protease 52 as a Prognostic Biomarker Correlates with Tumor Microenvironment and Therapy Response in Colorectal Cancer. Oncology. 2024; 102(12): 1041-55.

[285]

Chen X, Yong H, Chen M, Deng C, Wang P, Chu S, et al. TRIM21 attenuates renal carcinoma lipogenesis and malignancy by regulating SREBF1 protein stability. J Exp Clin Cancer Res. 2023; 42(1): 34.

[286]

Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, et al. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol. 2021; 11(5): 1369-85.

[287]

Zhang X, Wu X, Sun Y, Chu Y, Liu F, Chen C. TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling. Cell Oncol (Dordr). 2023; 46(2): 423-35.

[288]

Xiong D, Jin C, Ye X, Qiu B, Jianjun X, Zhu S, et al. TRIM44 promotes human esophageal cancer progression via the AKT/mTOR pathway. Cancer Sci. 2018; 109(10): 3080-92.

[289]

Zhou Y, Wu J, Fu X, Du W, Zhou L, Meng X, et al. OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer. Mol Cancer. 2014; 13: 258.

[290]

He L, Yu C, Qin S, Zheng E, Liu X, Liu Y, et al. The proteasome component PSMD14 drives myelomagenesis through a histone deubiquitinase activity. Mol Cell. 2023; 83(22): 4000-16.e6.

[291]

Jing C, Li X, Zhou M, Zhang S, Lai Q, Liu D, et al. The PSMD14 inhibitor Thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation. Theranostics. 2021; 11(12): 5847-62.

[292]

Shan Q, Yin L, Zhan Q, Yu J, Pan S, Zhuo J, et al. The p-MYH9/USP22/HIF-1α axis promotes lenvatinib resistance and cancer stemness in hepatocellular carcinoma. Signal Transduct Target Ther. 2024; 9(1): 249.

[293]

Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003; 1(14): 1001-8.

[294]

Koo N, Sharma AK, Narayan S. Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci. 2022; 23(9): 5005.

[295]

Zhang X, Wen X, Peng R, Pan Q, Weng D, Ma Y, et al. A first-in-human phase I study of a novel MDM2/p53 inhibitor alrizomadlin in advanced solid tumors. ESMO Open. 2024; 9(8): 103636.

[296]

McKean M, Tolcher AW, Reeves JA, Chmielowski B, Shaheen MF, Beck JT, et al. Newly updated activity results of alrizomadlin (APG-115), a novel MDM2/p53 inhibitor, plus pembrolizumab: Phase 2 study in adults and children with various solid tumors. J Clin Oncol. 2022; 40(16_suppl): 9517.

[297]

LoRusso P, Yamamoto N, Patel MR, Laurie SA, Bauer TM, Geng J, et al. The MDM2-p53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced or Metastatic Solid Tumors: Results of a Phase Ia, First-in-Human, Dose-Escalation Study. Cancer Discov. 2023; 13(8): 1802-13.

[298]

Yoo C, Lamarca A, Choi HJ, Vogel A, Pishvaian MJ, Goyal L, et al. Brightline-2: a phase IIa/IIb trial of brigimadlin (BI 907828) in advanced biliary tract cancer, pancreatic ductal adenocarcinoma or other solid tumors. Future Oncol. 2024; 20(16): 1069-77.

[299]

Qi M, Yi X, Yue B, Huang M, Zhou S, Xiong J. S100A6 inhibits MDM2 to suppress breast cancer growth and enhance sensitivity to chemotherapy. Breast Cancer Res. 2023; 25(1): 55.

[300]

Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci. 2024; 338: 122409.

[301]

Hu K, Luo Y, Miao P, Zhao L, Zhao B, Shi XJ, et al. Discovery of Novel [1,2,4]Triazolo[1,5-a]pyrimidine Derivatives as Novel Potent S-Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer. J Med Chem. 2024; 67(18): 16435-54.

[302]

Wang J, Ferrena A, Zhang R, Singh S, Viscarret V, Al-Harden W, et al. Targeted inhibition of SCF(SKP2) confers anti-tumor activities resulting in a survival benefit in osteosarcoma. Oncogene. 2024; 43(13): 962-75.

[303]

Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, et al. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol Res. 2022; 181: 106259.

[304]

Xue X, Kang JB, Yang X, Li N, Chang L, Ji J, et al. An efficient strategy for digging protein-protein interactions for rational drug design - A case study with HIF-1α/VHL. Eur J Med Chem. 2022; 227: 113871.

[305]

Fu X, Li J, Chen X, Chen H, Wang Z, Qiu F, et al. Repurposing AS1411 for constructing ANM-PROTACs. Cell Chem Biol. 2024; 31(7): 1290-304.e7.

[306]

Li Y, Li G, Zuo C, Wang X, Han F, Jia Y, et al. Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer. Eur J Med Chem. 2024; 270: 116367.

[307]

Yang N, Fan Z, Sun S, Hu X, Mao Y, Jia C, et al. Discovery of highly potent and selective KRAS(G12C) degraders by VHL-recruiting PROTACs for the treatment of tumors with KRAS(G12C)-Mutation. Eur J Med Chem. 2023; 261: 115857.

[308]

Sun LL, Zhao LN, Sun J, Yuan HF, Wang YF, Hou CY, et al. Inhibition of USP7 enhances CD8(+) T cell activity in liver cancer by suppressing PRDM1-mediated FGL1 upregulation. Acta Pharmacol Sin. 2024; 45(8): 1686-700.

[309]

Zhuang Z, Miao YL, Song SS, Leng GT, Zhang XF, He Q, et al. Discovery of pyrrolo[2,3-d]pyrimidin-4-one derivative YCH3124 as a potent USP7 inhibitor for cancer therapy. Eur J Med Chem. 2024; 277: 116752.

[310]

Kona SV, Kalivendi SV. The USP10/13 inhibitor, spautin-1, attenuates the progression of glioblastoma by independently regulating RAF-ERK mediated glycolysis and SKP2. Biochim Biophys Acta Mol Basis Dis. 2024; 1870(7): 167291.

[311]

Guo J, Zhao Y, Sui H, Liu L, Liu F, Yang L, et al. USP21-mediated G3BP1 stabilization accelerates proliferation and metastasis of esophageal squamous cell carcinoma via activating Wnt/β-Catenin signaling. Oncogenesis. 2024; 13(1): 23.

[312]

Song Y, Wang L, Zheng Y, Jia L, Li C, Chao K, et al. Deubiquitinating enzyme USP28 inhibitor AZ1 alone and in combination with cisplatin for the treatment of non-small cell lung cancer. Apoptosis. 2024; 29(9-10): 1793-809.

[313]

Xu J, Peng J, Sun S, Wang D, Yuan W, Yang X, et al. Preclinical testing of CT1113, a novel USP28 inhibitor, for the treatment of T-cell acute lymphoblastic leukaemia. Br J Haematol. 2024; 204(6): 2301-18.

[314]

Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol. 2024; 275(Pt 1): 133680.

[315]

Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol Cancer. 2024; 23(1): 110.

[316]

Shen C, Nayak A, Neitzel LR, Adams AA, Silver-Isenstadt M, Sawyer LM, et al. The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling. Nat Commun. 2021; 12(1): 5263.

[317]

Zaman SU, Pagare PP, Huang B, Rilee G, Ma Z, Zhang Y, et al. Novel PROTAC probes targeting FOSL1 degradation to eliminate head and neck squamous cell carcinoma cancer stem cells. Bioorg Chem. 2024; 151: 107613.

[318]

Zaman SU, Pagare PP, Ma H, Hoyle RG, Zhang Y, Li J. Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells through inhibition of Wnt/β-catenin signaling. RSC Med Chem. 2024; 15(11): 3746-58.

[319]

Du Y, Chen X, Chen W, Chen G, Cheng X, Wang H, et al. Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer. Bioorg Med Chem. 2024; 112: 117896.

[320]

Frost J, Rocha S, Ciulli A. Von Hippel-Lindau (VHL) small-molecule inhibitor binding increases stability and intracellular levels of VHL protein. J Biol Chem. 2021; 297(2): 100910.

[321]

Chen D, Ning Z, Chen H, Lu C, Liu X, Xia T, et al. An integrative pan-cancer analysis of biological and clinical impacts underlying ubiquitin-specific-processing proteases. Oncogene. 2020; 39(3): 587-602.

[322]

Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023; 42(1): 225.

[323]

Qiu W, Xiao Z, Yang Y, Jiang L, Song S, Qi X, et al. USP10 deubiquitinates RUNX1 and promotes proneural-to-mesenchymal transition in glioblastoma. Cell Death Dis. 2023; 14(3): 207.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/