Lipid metabolism reprograming by SREBP1-PCSK9 targeting sensitizes pancreatic cancer to immunochemotherapy

Mengyi Lao , Xiaozhen Zhang , Zejun Li , Kang Sun , Hanshen Yang , Sicheng Wang , Lihong He , Yan Chen , Hanjia Zhang , Jiatao Shi , Daqian Xu , Tingbo Liang , Xueli Bai

Cancer Communications ›› 2025, Vol. 45 ›› Issue (8) : 1010 -1037.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (8) : 1010 -1037. DOI: 10.1002/cac2.70038
ORIGINAL ARTICLE

Lipid metabolism reprograming by SREBP1-PCSK9 targeting sensitizes pancreatic cancer to immunochemotherapy

Author information +
History +
PDF

Abstract

Background: Pancreatic cancer's aberrant lipid metabolism fuels cell growth, invasion, and metastasis, yet its impact on immune surveillance and immunotherapy is unclear. This study investigated how sterol regulatory element-binding transcription factor 1 (SREBP1)-driven lipid metabolism affects the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC).

Methods: Clinical significance of SREBP1 was assessed in a PDAC cohort from China and The Cancer Genome Atlas (TCGA) cohorts. The in vitro mechanisms that SREBP1 regulated programmed cell death-ligand 1 (PD-L1) and proprotein convertase subtilisin/kexin type 9 (PCSK9) were investigated using immunofluorescence, flow cytometry, Western blotting, luciferase assays and chromatin immunoprecipitation. In vivo studies using PDAC-bearing mice, humanized patient-derived tumor xenograft (PDX) models, and autochthonous model of mutation (GEMM-KTC) evaluated the efficacy and mechanisms of programmed death receptor 1 (PD-1) antibodies and lipid inhibitors.

Results: Patients responding to anti-PD-1 therapy exhibited lower serum lipid levels than non-responders. Targeting SREBP1 disrupted lipid metabolism, decelerated tumor growth, and boosted the efficacy of immunotherapy for PDAC. Mechanistically, SREBP1 directly bound the PD-L1 promoter, suppressing its transcription. Meanwhile, PCSK9, a direct transcriptional target of SREBP1, modulated PD-L1 levels via lysosomal degradation. Consequently, the combination of PCSK9-neutralizing antibodies with PD-1 monotherapy showed a robust antitumor effect in both humanized PDX and GEMM-KTC models.

Conclusions: The SREBP1-PCSK9 axis-mediated lipid metabolism is crucial for triggering immune evasion and resistance to anti-PD-1. Targeting the SREBP1-PCSK9 axis could potentially reverse PDAC's resistance to anti-PD-1 therapy.

Keywords

Pancreatic ductal adenocarcinoma / lipid metabolism / immunochemotherapy / SREBP1 / PCSK9 / immunosuppressive tumor microenvironment / PD-1/PD-L1

Cite this article

Download citation ▾
Mengyi Lao, Xiaozhen Zhang, Zejun Li, Kang Sun, Hanshen Yang, Sicheng Wang, Lihong He, Yan Chen, Hanjia Zhang, Jiatao Shi, Daqian Xu, Tingbo Liang, Xueli Bai. Lipid metabolism reprograming by SREBP1-PCSK9 targeting sensitizes pancreatic cancer to immunochemotherapy. Cancer Communications, 2025, 45(8): 1010-1037 DOI:10.1002/cac2.70038

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer — clinical challenges and opportunities. Nat Rev Clin Oncol. 2020; 17(9): 527-40.

[2]

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017; 168(4): 707-23.

[3]

Zhang Y, Chen L. Classification of Advanced Human Cancers Based on Tumor Immunity in the MicroEnvironment (TIME) for Cancer Immunotherapy. JAMA Oncol. 2016; 2(11): 1403-4.

[4]

O'Reilly EM, Oh DY, Dhani N, Renouf DJ, Lee MA, Sun W, et al. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019; 5(10): 1431-8.

[5]

Li H, van der Merwe PA, Sivakumar S. Biomarkers of response to PD-1 pathway blockade. Br J Cancer. 2022; 126(12): 1663-75.

[6]

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515(7528): 563-7.

[7]

Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018; 553(7686): 91-5.

[8]

Chung CH, Lin CY, Chen CY, Hsueh CW, Chang YW, Wang CC, et al. Ferroptosis Signature Shapes the Immune Profiles to Enhance the Response to Immune Checkpoint Inhibitors in Head and Neck Cancer. Adv Sci (Weinh). 2023: e2204514.

[9]

Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clin Cancer Res. 2017; 23(14): 3711-20.

[10]

Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell. 2020; 78(6): 1019-33.

[11]

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020; 122(1): 4-22.

[12]

Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, et al. Enhancing CD8(+) T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell. 2017; 32(3): 377-91.e9.

[13]

Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, et al. RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis. Cancer Immunol Res. 2020; 8(5): 710-21.

[14]

Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, et al. Treg Cells Promote the SREBP1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8(+) T Cell-Derived Interferon-γ. Immunity. 2019; 51(2): 381-97.e6.

[15]

Lai DW, Chu PY, Sheu ML, Tsai YC, Lee YH, Liu SC, et al. The potential immunotherapy effect of Ginkgolide B thwarts oral squamous cell carcinoma progression by targeting the SREBP1/KLK8/CCL22 axis. Phytomedicine. 2025; 136: 156249.

[16]

Zhang H, Li Y, Huang J, Shen L, Xiong Y. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. Acta Pharm Sin B. 2024; 14(11): 4717-37.

[17]

Yin X, Xu R, Song J, Ruze R, Chen Y, Wang C, et al. Lipid metabolism in pancreatic cancer: emerging roles and potential targets. Cancer Commun (Lond). 2022; 42(12): 1234-56.

[18]

He Y, Qi S, Chen L, Zhu J, Liang L, Chen X, et al. The roles and mechanisms of SREBP1 in cancer development and drug response. Genes Dis. 2024; 11(4): 100987.

[19]

Fu Q, Chen Y, Huang D, Guo C, Zhang X, Xiao W, et al. Sintilimab Plus Modified FOLFIRINOX in Metastatic or Recurrent Pancreatic Cancer: The Randomized Phase II CISPD3 Trial. Ann Surg Oncol. 2023; 30(8): 5071-80.

[20]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8.

[21]

Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010; 28(1): 105-13.

[22]

Zhang X, Huang X, Xu J, Li E, Lao M, Tang T, et al. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat Commun. 2021; 12(1): 4536.

[23]

Chen X, Lu Y, Wang L, Ma X, Pu J, Lin L, et al. A fast chemical reprogramming system promotes cell identity transition through a diapause-like state. Nat Cell Biol. 2023; 25(8): 1146-56.

[24]

Lao M, Zhang X, Ma T, Xu J, Yang H, Duan Y, et al. Regulator of calcineurin 1 gene isoform 4 in pancreatic ductal adenocarcinoma regulates the progression of tumor cells. Oncogene. 2021; 40(17): 3136-3151.

[25]

Endo Y, Onodera A, Obata-Ninomiya K, Koyama-Nasu R, Asou HK, Ito T, et al. ACC1 determines memory potential of individual CD4(+) T cells by regulating de novo fatty acid biosynthesis. Nat Metab. 2019; 1(2): 261-75.

[26]

Kuipers RS, Luxwolda MF, Sango WS, Kwesigabo G, Velzing-Aarts FV, Dijck-Brouwer DA, et al. Postpartum changes in maternal and infant erythrocyte fatty acids are likely to be driven by restoring insulin sensitivity and DHA status. Med Hypotheses. 2011; 76(6): 794-801.

[27]

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab. 2022; 34(11): 1675-99.

[28]

Sun Y, He W, Luo M, Zhou Y, Chang G, Ren W, et al. SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol. 2015; 36(6): 4133-41.

[29]

Zhou C, Qian W, Ma J, Cheng L, Jiang Z, Yan B, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif. 2019; 52(1): e12514.

[30]

Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012; 4(127): 127ra37.

[31]

Bertolio R, Napoletano F, Mano M, Maurer-Stroh S, Fantuz M, Zannini A, et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun. 2019; 10(1): 1326.

[32]

Londregan AT, Wei L, Xiao J, Lintner NG, Petersen D, Dullea RG, et al. Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents. J Med Chem. 2018; 61(13): 5704-18.

[33]

Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature. 2020; 588(7839): 693-8.

[34]

Sabatine MS. PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol. 2019; 16(3): 155-65.

[35]

Liu H, Kuang X, Zhang Y, Ye Y, Li J, Liang L, et al. ADORA1 Inhibition Promotes Tumor Immune Evasion by Regulating the ATF3-PD-L1 Axis. Cancer Cell. 2020; 37(3): 324-39.e8.

[36]

Turbitt WJ, Buchta Rosean C, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol Rev. 2020; 295(1): 203-19.

[37]

Liu X, Hartman CL, Li L, Albert CJ, Si F, Gao A, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med. 2021; 13(587): eaaz6314.

[38]

Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and function. Nat Chem Biol. 2022; 18(5): 470-81.

[39]

Lim SA, Wei J, Nguyen TM, Shi H, Su W, Palacios G, et al. Lipid signalling enforces functional specialization of T(reg) cells in tumours. Nature. 2021; 591(7849): 306-11.

[40]

Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022; 40(4): 365-78.e6.

[41]

Currie E, Schulze A, Zechner R, Walther TC, Farese RV,. Cellular fatty acid metabolism and cancer. Cell Metab. 2013; 18(2): 153-61.

[42]

Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell. 2020; 183(7): 1848-66.e26.

[43]

Zhang C, Yue C, Herrmann A, Song J, Egelston C, Wang T, et al. STAT3 Activation-Induced Fatty Acid Oxidation in CD8(+) T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metab. 2020; 31(1): 148-61.e5.

[44]

Yoo SK, Chowell D, Valero C, Morris LGT, Chan TA. Outcomes Among Patients With or Without Obesity and With Cancer Following Treatment With Immune Checkpoint Blockade. JAMA Netw Open. 2022; 5(2): e220448.

[45]

Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014; 14(11): 754-62.

[46]

Gonçalves DC, Lira FS, Yamashita AS, Carnevali Junior LC, Eder R, Laviano A, et al. Liver lipid metabolism disruption in cancer cachexia is aggravated by cla supplementation -induced inflammation. Clin Nutr. 2019; 38(5): 2219-30.

[47]

Saitoski K, Ryaboshapkina M, Hamza GM, Jarnuczak AF, Berthault C, Carlotti F, et al. Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intracellular and extracellular regulatory circuits. J Biol Chem. 2022; 298(7): 102096.

[48]

Almeida CR, Ferreira BH, Duarte IF. Targeting PCSK9: a promising adjuvant strategy in cancer immunotherapy. Signal Transduct Target Ther. 2021; 6(1): 111.

[49]

Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, et al. Potentiating CD8(+) T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021; 12(4): 240-60.

[50]

Guedeney P, Giustino G, Sorrentino S, Claessen BE, Camaj A, Kalkman DN, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2022 Feb 12; 43(7): e17-e25.

[51]

Guedeney P, Sorrentino S, Giustino G, Chapelle C, Laporte S, Claessen BE, et al. Indirect comparison of the efficacy and safety of alirocumab and evolocumab: a systematic review and network meta-analysis. Eur Heart J Cardiovasc Pharmacother. 2021; 7(3): 225-35.

[52]

Koskinas KC, Windecker S, Pedrazzini G, Mueller C, Cook S, Matter CM, et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J Am Coll Cardiol. 2019; 74(20): 2452-62.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/