N6-methyladenosine-regulated exosome biogenesis orchestrates an immunosuppressive pre-metastatic niche in gastric cancer peritoneal metastasis

Song Li , Jianyuan Zhou , Shuang Wang , Qian Yang , Shulun Nie , Chunwang Ji , Xue Zhang , Shuhan Li , Xuanyu Zhou , Jiahui Chu , Xuehui Wu , Jianqiao Jiao , Ruitao Xu , Qian Xu , Miao Huang , Qiushi Wang , Liliang Dou , Qinqin Hu , Fan Jiang , Xin Dai , Zhaodi Nan , Xinyu Song , Di Zhang , Lian Liu

Cancer Communications ›› 2025, Vol. 45 ›› Issue (8) : 941 -965.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (8) : 941 -965. DOI: 10.1002/cac2.70034
ORIGINAL ARTICLE

N6-methyladenosine-regulated exosome biogenesis orchestrates an immunosuppressive pre-metastatic niche in gastric cancer peritoneal metastasis

Author information +
History +
PDF

Abstract

Background: Gastric cancer peritoneal metastasis is clinically challenging, given the limited treatment options and poor prognosis. The molecular mechanisms that precede gastric cancer peritoneal metastasis, known as the pre-metastatic niche (PMN), and its relationship with N6-methyladenosine (m6A) modification remain unclear.

Methods: We used 87 resected gastric cancer tissues and 4 public datasets to explore the association between methyltransferase-like 3 (METTL3) expression and gastric cancer peritoneal metastasis. Roles of m6A, exosomes, or macrophages in PMN formation were explored in immunocompetent mouse models through exosome treatments or macrophage modifications. Key genes and regulatory mechanisms were uncovered using mass spectrometry, RNA/miRNA sequencing, RNA-immunoprecipitation, dual-luciferase assays, and point mutations in the ras-related protein Rab-27A (RAB27A) in cells. Macrophage and T-cell functions were assessed using enzyme-linked immunosorbent assay, flow cytometry, and cytotoxicity assays.

Results: METTL3 overexpression in gastric cancer cells enhanced RAB27A translation by methylating its mRNA A502 base, facilitated by its m6A “reader” YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), and led to increased exosome biogenesis. The miRNA-17-92 cluster was enriched in METTL3-overexpressed cell-derived exosomes and targeted SRC kinase signaling inhibitor 1 (SRCIN1) to activate SRC proto-oncogene, non-receptor tyrosine kinase (SRC) signaling in peritoneal macrophages. Macrophage activation skewed cytokine production towards an immunosuppressive profile in the peritoneum, elevating the levels of interleukin (IL)-10 and tumor necrosis factor (TNF) and reducing the levels of IL-1 and IL-6. These cytokine shifts inhibited T cell proliferation and cytotoxic activities, which created an immunosuppressive PMN and led to peritoneal metastasis. The association between METTL3, macrophages, and peritoneal metastasis was verified in clinical samples.

Conclusions: Our study identified an intricate m6A-regulated mechanism of peritoneal PMN development that is mediated by exosome-promoted macrophages. These insights into gastric cancer peritoneal metastasis offer promising directions for translational research.

Keywords

exosomes / gastric cancer / N6-methyladenosine / peritoneal metastasis / pre-metastatic niche

Cite this article

Download citation ▾
Song Li, Jianyuan Zhou, Shuang Wang, Qian Yang, Shulun Nie, Chunwang Ji, Xue Zhang, Shuhan Li, Xuanyu Zhou, Jiahui Chu, Xuehui Wu, Jianqiao Jiao, Ruitao Xu, Qian Xu, Miao Huang, Qiushi Wang, Liliang Dou, Qinqin Hu, Fan Jiang, Xin Dai, Zhaodi Nan, Xinyu Song, Di Zhang, Lian Liu. N6-methyladenosine-regulated exosome biogenesis orchestrates an immunosuppressive pre-metastatic niche in gastric cancer peritoneal metastasis. Cancer Communications, 2025, 45(8): 941-965 DOI:10.1002/cac2.70034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49.

[2]

Dixon M, Mahar AL, Helyer LK, Vasilevska-Ristovska J, Law C, Coburn NG. Prognostic factors in metastatic gastric cancer: results of a population-based, retrospective cohort study in Ontario. Gastric Cancer. 2016; 19(1): 150–9.

[3]

Kwee RM, Kwee TC. Modern imaging techniques for preoperative detection of distant metastases in gastric cancer. World J Gastroenterol. 2015; 21(37): 10502–9.

[4]

Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines. 2022; 10(6): 1376.

[5]

Gwee YX, Chia DKA, So J, Ceelen W, Yong WP, Tan P, et al. Integration of Genomic Biology Into Therapeutic Strategies of Gastric Cancer Peritoneal Metastasis. J Clin Oncol. 2022; 40(24): 2830.

[6]

Ji ZH, Yu Y, Liu G, Zhang YB, An SL, Li B, et al. Peritoneal cancer index (PCI) based patient selecting strategy for complete cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy in gastric cancer with peritoneal metastasis: A single-center retrospective analysis of 125 patients. Eur J Surg Oncol. 2021; 47(6): 1411–9.

[7]

Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017; 17(5): 302–17.

[8]

Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell. 2016; 30(5): 668–81.

[9]

Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell. 2023; 41(3): 546–72.

[10]

McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014; 16(8): 717–27.

[11]

Guo L, Zhu Y, Li L, Zhou S, Yin G, Yu G, et al. Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med. 2019; 8(12): 5687–701.

[12]

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016; 126(4): 1208–15.

[13]

Gao J, Li S, Xu Q, Zhang X, Huang M, Dai X, et al. Exosomes Promote Pre-Metastatic Niche Formation in Gastric Cancer. Front Oncol. 2021; 11: 652378.

[14]

Yue SW, Liu HL, Su HF, Luo C, Liang HF, Zhang BX, et al. m6A-regulated tumor glycolysis: new advances in epigenetics and metabolism. Mol Cancer. 2023; 22(1): 137.

[15]

Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis. 2020; 11(10): 836.

[16]

Xie JW, Huang XB, Chen QY, Ma YB, Zhao YJ, Liu LC, et al. m(6)A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling. Mol Cancer. 2020; 19(1): 114.

[17]

Zhang Y, Qiu JG, Jia XY, Ke Y, Zhang MK, Stieg D, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett. 2023; 553: 215971.

[18]

Zou S, Chen S, Rao G, Zhang G, Ma M, Peng B, et al. Extrachromosomal circular MiR-17-92 amplicon promotes HCC. Hepatology. 2024; 79(1): 79–95.

[19]

Shen DD, Pang JR, Bi YP, Zhao LF, Li YR, Zhao LJ, et al. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer. 2022; 21(1): 75.

[20]

Zhu X, Zheng W, Wang X, Li Z, Shen X, Chen Q, et al. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. Adv Sci (Weinh). 2024; 11(12): e2307870.

[21]

Pinto A, Marangon I, Mereaux J, Nicolas-Boluda A, Lavieu G, Wilhelm C, et al. Immune Reprogramming Precision Photodynamic Therapy of Peritoneal Metastasis by Scalable Stem-Cell-Derived Extracellular Vesicles. ACS Nano. 2021; 15(2): 3251–63.

[22]

Li M, Ye J, Xia Y, Li M, Li G, Hu X, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia. 2022; 36(11): 2586–95.

[23]

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020; 18(7): e3000410.

[24]

De Jesus A, Pusec CM, Nguyen T, Keyhani-Nejad F, Gao P, Weinberg SE, et al. Optimized protocol to isolate primary mouse peritoneal macrophage metabolites. STAR Protoc. 2022; 3(4): 101668.

[25]

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923–30.

[26]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.

[27]

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5): 284–7.

[28]

Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010; 26(1): 136–8.

[29]

Sturm G, Finotello F, List M. Immunedeconv: An R Package for Unified Access to Computational Methods for Estimating Immune Cell Fractions from Bulk RNA-Sequencing Data. Methods Mol Biol. 2020; 2120: 223–32.

[30]

Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 2018; 1711: 243–59.

[31]

Quan F, Liang X, Cheng M, Yang H, Liu K, He S, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation. Genome Med. 2023; 15(1): 91.

[32]

Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med. 2021; 27(1): 141–51.

[33]

Li Q, Li B, Li Q, Wei S, He Z, Huang X, et al. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis. 2018; 9(9): 854.

[34]

Xia X, Zhang Z, Zhu C, Ni B, Wang S, Yang S, et al. Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications. Nat Commun. 2022; 13(1): 1017.

[35]

Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect. 2019; 8(1): 307–26.

[36]

Singh R, Pochampally R, Watabe K, Lu Z, Mo YY. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 2014; 13: 256.

[37]

Chen L, Guo P, He Y, Chen Z, Chen L, Luo Y, et al. HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis. 2018; 9(5): 513.

[38]

Wang G, Li J, Bojmar L, Chen H, Li Z, Tobias GC, et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature. 2023; 618(7964): 374–82.

[39]

Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015; 17(6): 816–26.

[40]

Okabe Y. Immune Niche Within the Peritoneal Cavity. Curr Top Microbiol Immunol. 2021; 434: 123–34.

[41]

Bootsma S, Bijlsma MF, Vermeulen L. The molecular biology of peritoneal metastatic disease. EMBO Mol Med. 2023; 15(3): e15914.

[42]

Griesmann H, Drexel C, Milosevic N, Sipos B, Rosendahl J, Gress TM, et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut. 2017; 66(7): 1278–85.

[43]

Hongu T, Pein M, Insua-Rodriguez J, Gutjahr E, Mattavelli G, Meier J, et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat Cancer. 2022; 3(4): 486–504.

[44]

Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009; 284(42): 29087–96.

[45]

Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, et al. Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Res. 2018; 78(15): 4316–30.

[46]

Eum HH, Kwon M, Ryu D, Jo A, Chung W, Kim N, et al. Tumor-promoting macrophages prevail in malignant ascites of advanced gastric cancer. Exp Mol Med. 2020; 52(12): 1976–88.

[47]

Takahashi K, Kurashina K, Yamaguchi H, Kanamaru R, Ohzawa H, Miyato H, et al. Altered intraperitoneal immune microenvironment in patients with peritoneal metastases from gastric cancer. Front Immunol. 2022; 13: 969468.

[48]

Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K, et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer. 2016; 19(4): 1052–65.

[49]

Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity. 2022; 55(9): 1564–80.

[50]

Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 2021; 33(10): 2040–58 e10.

[51]

Xu F, Cui WQ, Wei Y, Cui J, Qiu J, Hu LL, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018; 37(1): 207.

[52]

Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, et al. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020; 39(20): e104514.

[53]

Pan Y, Chen H, Zhang X, Liu W, Ding Y, Huang D, et al. METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy. Cell Rep Med. 2023; 4(8): 101144.

[54]

Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, et al. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013; 288(11): 7956–67.

[55]

Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formos Med Assoc. 2019; 118(1 Pt 1): 2–6.

[56]

Zhao X, Xu Y, Sun X, Ma Y, Zhang Y, Wang Y, et al. miR-17-5p promotes proliferation and epithelial-mesenchymal transition in human osteosarcoma cells by targeting SRC kinase signaling inhibitor 1. J Cell Biochem. 2019; 120(4): 5495–504.

[57]

Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol. 2019; 30(3): 431–8.

[58]

Wang W, Yue C, Gao S, Li S, Zhou J, Chen J, et al. Promising Roles of Exosomal microRNAs in Systemic Lupus Erythematosus. Front Immunol. 2021; 12: 757096.

[59]

Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev. 2023; 73: 78–92.

[60]

Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021; 593(7860): 597–601.

[61]

Morelli E, Biamonte L, Federico C, Amodio N, Di Martino MT, Gallo Cantafio ME, et al. Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood. 2018; 132(10): 1050–63.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/