Pan-cancer analysis shapes the understanding of cancer biology and medicine

Xiaoping Cen , Yuanyuan Lan , Jiansheng Zou , Ruilin Chen , Can Hu , Yahan Tong , Chen Zhang , Jingyue Chen , Yuanmei Wang , Run Zhou , Weiwei He , Tianyu Lu , Fred Dubee , Dragomirka Jovic , Wei Dong , Qingqing Gao , Man Ma , Youyong Lu , Yu Xue , Xiangdong Cheng , Yixue Li , Huanming Yang

Cancer Communications ›› 2025, Vol. 45 ›› Issue (7) : 728 -746.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (7) : 728 -746. DOI: 10.1002/cac2.70008
REVIEW

Pan-cancer analysis shapes the understanding of cancer biology and medicine

Author information +
History +
PDF

Abstract

Advances in multi-omics datasets and analytical methods have revolutionized cancer research, offering a comprehensive, pan-cancer perspective. Pan-cancer studies identify shared mechanisms and unique traits across different cancer types, which are reshaping diagnostic and treatment strategies. However, continued innovation is required to refine these approaches and deepen our understanding of cancer biology and medicine. This review summarized key findings from pan-cancer research and explored their potential to drive future advancements in oncology.

Keywords

artificial intelligence / cancer biology / cancer treatment / multi-omics / pan-cancer

Cite this article

Download citation ▾
Xiaoping Cen, Yuanyuan Lan, Jiansheng Zou, Ruilin Chen, Can Hu, Yahan Tong, Chen Zhang, Jingyue Chen, Yuanmei Wang, Run Zhou, Weiwei He, Tianyu Lu, Fred Dubee, Dragomirka Jovic, Wei Dong, Qingqing Gao, Man Ma, Youyong Lu, Yu Xue, Xiangdong Cheng, Yixue Li, Huanming Yang. Pan-cancer analysis shapes the understanding of cancer biology and medicine. Cancer Communications, 2025, 45(7): 728-746 DOI:10.1002/cac2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El Tekle G, Bernasocchi T, Unni AM, Bertoni F, Rossi D, Rubin MA, et al. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us. Trends Cancer. 2021; 7(9): 823–36.

[2]

Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol. 2020; 10: 606400.

[3]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024; 74(1): 12-49.

[4]

André F, Rassy E, Marabelle A, Michiels S, Besse B. Forget lung, breast or prostate cancer: why tumour naming needs to change. Nature. 2024; 626(7997): 26-9.

[5]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424.

[6]

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-63.

[7]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209-49.

[8]

Lavery JA, Lepisto EM, Brown S, Rizvi H, McCarthy C, LeNoue-Newton M, et al. A Scalable Quality Assurance Process for Curating Oncology Electronic Health Records: The Project GENIE Biopharma Collaborative Approach. JCO Clin Cancer Inform. 2022; 6: e2100105.

[9]

Chai H, Zhou X, Zhang Z, Rao J, Zhao H, Yang Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med. 2021; 134: 104481.

[10]

Stancl P, Karlic R. Machine learning for pan-cancer classification based on RNA sequencing data. Front Mol Biosci. 2023; 10: 1285795.

[11]

Prelaj A, Miskovic V, Zanitti M, Trovo F, Genova C, Viscardi G, et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review. Ann Oncol. 2024; 35(1): 29-65.

[12]

Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, Cuppen E, et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature. 2023; 618(7964): 333-41.

[13]

Geffen Y, Anand S, Akiyama Y, Yaron TM, Song Y, Johnson JL, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell. 2023; 186(18): 3945-67. e26.

[14]

Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013; 45(10): 1113-20.

[15]

Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013; 45(10): 1134-40.

[16]

Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C, et al. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun. 2013; 4: 2730.

[17]

Cabanski CR, White NM, Dang HX, Silva-Fisher JM, Rauck CE, Cicka D, et al. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol. 2015; 12(6): 628-42.

[18]

Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015; 6: 8971.

[19]

Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018; 555(7696): 371-6.

[20]

Saghafinia S, Mina M, Riggi N, Hanahan D, Ciriello G. Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep. 2018; 25(4): 1066-80. e8.

[21]

Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018; 6(1): 63.

[22]

Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019; 575(7781): 210-6.

[23]

Robichaux JP, Elamin YY, Vijayan RSK, Nilsson MB, Hu L, He J, et al. Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity. Cancer Cell. 2019; 36(4): 444-57. e7.

[24]

Tan H, Huang S, Zhang Z, Qian X, Sun P, Zhou X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine. 2019; 43: 82-97.

[25]

Liu B, Liu Y, Pan X, Li M, Yang S, Li SC. DNA Methylation Markers for Pan-Cancer Prediction by Deep Learning. Genes (Basel). 2019; 10(10): 778.

[26]

Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020; 30(9): 745-62.

[27]

Arora A, Olshen AB, Seshan VE, Shen R. Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Genome Med. 2020; 12(1): 110.

[28]

Kaushik AC, Mehmood A, Dai X, Wei DQ. Pan-Cancer Analysis and Drug Formulation for GPR139 and GPR142. Front Pharmacol. 2020; 11: 521245.

[29]

Cai MC, Zhao X, Cao M, Ma P, Chen M, Wu J, et al. T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. J Pathol. 2020; 251(2): 147-59.

[30]

Huang Z, Bianchi F, Yuksekgonul M, Montine TJ, Zou J. A visual-language foundation model for pathology image analysis using medical Twitter. Nat Med. 2023; 29(9): 2307-16.

[31]

Zhao Z, Wang S, Zucknick M, Aittokallio T. Tissue-specific identification of multi-omics features for pan-cancer drug response prediction. iScience. 2022; 25(8): 104767.

[32]

Pyke RM, Mellacheruvu D, Dea S, Abbott CW, McDaniel L, Bhave DP, et al. A machine learning algorithm with subclonal sensitivity reveals widespread pan-cancer human leukocyte antigen loss of heterozygosity. Nat Commun. 2022; 13(1): 1925.

[33]

Unger M, Kather JN. A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med Genomics. 2024; 17(1): 48.

[34]

Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, et al. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat Cancer. 2024; 5(9): 1305-17.

[35]

Pizurica M, Zheng Y, Carrillo-Perez F, Noor H, Yao W, Wohlfart C, et al. Digital profiling of gene expression from histology images with linearized attention. Nature Communications. 2024; 15(1): 9886.

[36]

Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2020; 1(8): 789-99.

[37]

Ding Y, Wang K, Zhao S, Li Y, Qiu W, Zhu C, et al. Role of Kinetochore Scaffold 1 (KNL1) in Tumorigenesis and Tumor Immune Microenvironment in Pan-Cancer: Bioinformatics Analyses and Validation of Expression. Int J Gen Med. 2023; 16: 4883-906.

[38]

Wang Y, Huang Y, Yang M, Yu Y, Chen X, Ma L, et al. Comprehensive Pan-Cancer Analyses of Immunogenic Cell Death as a Biomarker in Predicting Prognosis and Therapeutic Response. Cancers (Basel). 2022; 14(23): 5952.

[39]

Ge Q, Li G, Chen J, Song J, Cai G, He Y, et al. Immunological Role and Prognostic Value of APBB1IP in Pan-Cancer Analysis. J Cancer. 2021; 12(2): 595-610.

[40]

Pan B, Cheng X, Tan W, Liu R, Wu X, He J, et al. Pan-cancer analysis shows that IBSP is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including osteosarcoma. Front Immunol. 2023; 14: 1188256.

[41]

Al-Fatlawi A, Afrin N, Ozen C, Malekian N, Schroeder M. NetRank Recovers Known Cancer Hallmark Genes as Universal Biomarker Signature for Cancer Outcome Prediction. Front Bioinform. 2022; 2: 780229.

[42]

Price BA, Marron JS, Mose LE, Perou CM, Parker JS. Translating transcriptomic findings from cancer model systems to humans through joint dimension reduction. Commun Biol. 2023; 6(1): 179.

[43]

Lewis JE, Kemp ML. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat Commun. 2021; 12(1): 2700.

[44]

Qiu W, Dincer AB, Janizek JD, Celik S, Pittet MJ, Naxerova K, et al. Deep profiling of gene expression across 18 human cancers. Nature Biomedical Engineering. 2024.

[45]

Pan-cancer analysis of whole genomes. Nature. 2020; 578(7793): 82-93.

[46]

Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 2023; 22(1): 170.

[47]

Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history of 2,658 cancers. Nature. 2020; 578(7793): 122-8.

[48]

Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, Wang K, et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell. 2021; 184(9): 2487-502. e13.

[49]

Sinha S, Vegesna R, Mukherjee S, Kammula AV, Dhruba SR, Wu W, et al. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. Nat Cancer. 2024; 5(6): 938-52.

[50]

Chang TG, Cao Y, Sfreddo HJ, Dhruba SR, Lee SH, Valero C, et al. LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. Nat Cancer. 2024; 5(8): 1158-75.

[51]

Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med. 2023; 4(1): 15-30. e8.

[52]

Fredriksson NJ, Ny L, Nilsson JA, Larsson E. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat Genet. 2014; 46(12): 1258-63.

[53]

Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018; 173(2): 371-85. e18.

[54]

Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022; 40(8): 865-78. e6.

[55]

Chang E, Kim SJ, Hwang HS, Song KJ, Kim K, Kim MS, et al. Pan-cancer proteogenomic landscape of whole-genome doubling reveals putative therapeutic targets in various cancer types. Clin Transl Med. 2024; 14(8): e1796.

[56]

Vorontsov E, Bozkurt A, Casson A, Shaikovski G, Zelechowski M, Severson K, et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat Med. 2024; 30(10): 2924-35.

[57]

Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, et al. Towards a general-purpose foundation model for computational pathology. Nat Med. 2024; 30(3): 850-62.

[58]

Xu H, Usuyama N, Bagga J, Zhang S, Rao R, Naumann T, et al. A whole-slide foundation model for digital pathology from real-world data. Nature. 2024; 630(8015): 181-8.

[59]

Howard FM, Hieromnimon HM, Ramesh S, Dolezal J, Kochanny S, Zhang Q, et al. Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features. Science Advances. 2024; 10(46): eadq0856.

[60]

Liu R, Rizzo S, Waliany S, Garmhausen MR, Pal N, Huang Z, et al. Systematic pan-cancer analysis of mutation-treatment interactions using large real-world clinicogenomics data. Nat Med. 2022; 28(8): 1656-61.

[61]

Sato G, Shirai Y, Namba S, Edahiro R, Sonehara K, Hata T, et al. Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis. Nat Commun. 2023; 14(1): 3671.

[62]

Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020; 578(7793): 112-21.

[63]

Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, Cuppen E, et al. Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science. 2022; 376(6589): eabg5601.

[64]

Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020; 52(3): 306-19.

[65]

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020; 578(7793): 94-101.

[66]

Degasperi A, Zou X, Dias Amarante T, Martinez-Martinez A, Koh GCC, Dias JML, et al. Substitution mutational signatures in whole-genome–sequenced cancers in the UK population. Science. 2022; 376(6591): abl9283.

[67]

Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020; 20(10): 555-72.

[68]

Li Y, Porta-Pardo E, Tokheim C, Bailey MH, Yaron TM, Stathias V, et al. Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell. 2023; 186(18): 3921-44. e25.

[69]

Shuai S, Gallinger S, Stein LD. Combined burden and functional impact tests for cancer driver discovery using DriverPower. Nat Commun. 2020; 11(1): 734.

[70]

Kumar S, Warrell J, Li S, McGillivray PD, Meyerson W, Salichos L, et al. Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences. Cell. 2020; 180(5): 915-27. e16.

[71]

Byrd DA, Fan W, Greathouse KL, Wu MC, Xie H, Wang X. The intratumor microbiome is associated with microsatellite instability. J Natl Cancer Inst. 2023; 115(8): 989-93.

[72]

Zhou P, Lu SL, Chang L, Liao B, Cheng M, Xu X, et al. The pan-cancer landscape of abnormal DNA methylation and intratumor microorganisms. Neoplasia. 2023; 37: 100882.

[73]

Aissa AF, Islam A, Ariss MM, Go CC, Rader AE, Conrardy RD, et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun. 2021; 12(1): 1628.

[74]

Barkley D, Moncada R, Pour M, Liberman DA, Dryg I, Werba G, et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet. 2022; 54(8): 1192-201.

[75]

Baron M, Tagore M, Hunter MV, Kim IS, Moncada R, Yan Y, et al. The Stress-Like Cancer Cell State Is a Consistent Component of Tumorigenesis. Cell Syst. 2020; 11(5): 536-46. e7.

[76]

Luca BA, Steen CB, Matusiak M, Azizi A, Varma S, Zhu C, et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell. 2021; 184(21): 5482-96. e28.

[77]

Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet. 2020; 52(11): 1208-18.

[78]

Liang Q, Huang Y, He S, Chen K. Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity. Nat Commun. 2023; 14(1): 8416.

[79]

Zhu Q, Zhao X, Zhang Y, Li Y, Liu S, Han J, et al. Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell lines. Nat Commun. 2023; 14(1): 8170.

[80]

Peng L, Xing R, Liu D, Bao L, Cheng W, Wang H, et al. Characterization and validation of somatic mutation spectrum to reveal heterogeneity in gastric cancer by single cell sequencing. Science Bulletin. 2019; 64(4): 236-44.

[81]

Wang L, Sebra RP, Sfakianos JP, Allette K, Wang W, Yoo S, et al. A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Genome Med. 2020; 12(1): 24.

[82]

Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023; 51(D1): D1425-D31.

[83]

Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6(5): 392-401.

[84]

Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021; 18(12): 792-804.

[85]

Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat Commun. 2022; 13(1): 6619.

[86]

Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2021; 374(6574): abe6474.

[87]

Jin X, Cai Y, Xue G, Que J, Cheng R, Yang Y, et al. Identification of shared characteristics in tumor-infiltrating T cells across 15 cancers. Mol Ther Nucleic Acids. 2023; 32: 189-202.

[88]

Hong F, Meng Q, Zhang W, Zheng R, Li X, Cheng T, et al. Single-Cell Analysis of the Pan-Cancer Immune Microenvironment and scTIME Portal. Cancer Immunol Res. 2021; 9(8): 939-51.

[89]

Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, et al. A blueprint for tumor-infiltrating B cells across human cancers. Science. 2024; 384(6695): eadj4857.

[90]

Pang S, Wu L, Shen X, Sun Y, Wang J, Zhao Y, et al. The Evolutionary Landscape of Pan-Cancer Drives Clinical Aggression. bioRxiv. 2018.

[91]

Yang X, Liu W, Macintyre G, Van Loo P, Markowetz F, Bailey P, et al. Pan-cancer evolution signatures link clonal expansion to dynamic changes in the tumour immune microenvironment. bioRxiv. 2023: 2023.10.12.560630.

[92]

Mo C-K, Liu J, Chen S, Storrs E, Targino da Costa ALN, Houston A, et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature. 2024; 634(8036): 1178-86.

[93]

Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020; 369(6499): eabb9601.

[94]

Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020; 31(6): 745-59.

[95]

Gao Q, Wang C, Yang X, Fang S, Zhang Y, Wang G, et al. 909P A multi-cancer early detection model based on liquid biopsy of multi-omics biomarkers: A proof of concept study (PROMISE study). Annals of Oncology. 2022; 33: S963-S4.

[96]

Sun J, Luo J, Jiang F, Zhao J, Zhou S, Wang L, et al. Exploring the cross-cancer effect of circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst. 2024; 116(4): 565-73.

[97]

Alvez MB, Edfors F, von Feilitzen K, Zwahlen M, Mardinoglu A, Edqvist PH, et al. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat Commun. 2023; 14(1): 4308.

[98]

Elmas A, Tharakan S, Jaladanki S, Galsky MD, Liu T, Huang KL. Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets. Commun Biol. 2021; 4(1): 1112.

[99]

Gonçalves E, Poulos RC, Cai Z, Barthorpe S, Manda SS, Lucas N, et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell. 2022; 40(8): 835-49. e8.

[100]

Wang JM, Hong R, Demicco EG, Tan J, Lazcano R, Moreira AL, et al. Deep learning integrates histopathology and proteogenomics at a pan-cancer level. Cell Rep Med. 2023; 4(9): 101173.

[101]

Peng W, Wu R, Dai W, Yu N. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism. BMC Bioinformatics. 2023; 24(1): 16.

[102]

Peng W, Tang Q, Dai W, Chen T. Improving cancer driver gene identification using multi-task learning on graph convolutional network. Brief Bioinform. 2022; 23(1): bbab432.

[103]

Zhao W, Gu X, Chen S, Wu J, Zhou Z. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Bioinformatics. 2022; 38(21): 4901-7.

[104]

Peng W, Wu R, Dai W, Ning Y, Fu X, Liu L, et al. MiRNA-gene network embedding for predicting cancer driver genes. Brief Funct Genomics. 2023; 22(4): 341-50.

[105]

Zhang SW, Xu JY, Zhang T. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data. Genomics Proteomics Bioinformatics. 2022; 20(5): 928-38.

[106]

Xu X, Li Y, Chen T, Hou C, Yang L, Zhu P, et al. VIPpred: a novel model for predicting variant impact on phosphorylation events driving carcinogenesis. Brief Bioinform. 2023; 25(1): bbad480.

[107]

Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, et al. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol. 2022; 5(1): 1367.

[108]

Kossinna P, Cai W, Lu X, Shemanko CS, Zhang Q. Stabilized COre gene and Pathway Election uncovers pan-cancer shared pathways and a cancer-specific driver. Sci Adv. 2022; 8(51): eabo2846.

[109]

Liu A, Shen L, Li N, Shen L, Li Z. Pan-cancer analyses of pyroptosis with functional implications for prognosis and immunotherapy in cancer. J Transl Med. 2022; 20(1): 109.

[110]

Wang Z, Zhang HM, Guo YR, Li LL, Zhang GZ. Role of sphingosine-1-phosphate receptors in the tumor microenvironment: prospects for cancer immunotherapy. Eur Rev Med Pharmacol Sci. 2023; 27(2): 713-27.

[111]

Zhang Y, Chen F, Creighton CJ. Pan-cancer molecular subtypes of metastasis reveal distinct and evolving transcriptional programs. Cell Rep Med. 2023; 4(2): 100932.

[112]

Combes AJ, Samad B, Tsui J, Chew NW, Yan P, Reeder GC, et al. Discovering dominant tumor immune archetypes in a pan-cancer census. Cell. 2022; 185(1): 184-203. e19.

[113]

Li X, Yuan X, Zhu X, Li C, Ji L, Lv K, et al. A meta-analysis of tissue microbial biomarkers for recurrence and metastasis in multiple cancer types. J Med Microbiol. 2023; 72(8).

[114]

Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 2022; 185(20): 3807-22. e12.

[115]

Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 2022; 185(20): 3789-806. e17.

[116]

Zhang B, Yue H. Molecular Classification of Common Solid Cancers. Cancer Research on Prevention and Treatment. 2016; 43(11): 1001-4.

[117]

Nofech-Mozes I, Soave D, Awadalla P, Abelson S. Pan-cancer classification of single cells in the tumour microenvironment. Nat Commun. 2023; 14(1): 1615.

[118]

Zhong Z, Hou J, Yao Z, Dong L, Liu F, Yue J, et al. Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics. Nat Commun. 2024; 15(1): 1929.

[119]

Sh Y, Zhang X, Yang Z, Dong J, Wang Y, Zhou Y, et al. CaSee: A lightning transfer-learning model directly used to discriminate cancer/normal cells from scRNA-seq. Oncogene. 2022; 41(44): 4866-76.

[120]

Li X, Wu WK, Xing R, Wong SH, Liu Y, Fang X, et al. Distinct Subtypes of Gastric Cancer Defined by Molecular Characterization Include Novel Mutational Signatures with Prognostic Capability. Cancer Res. 2016; 76(7): 1724-32.

[121]

Yang H, Zhao L, Li D, An C, Fang X, Chen Y, et al. Subtype-WGME enables whole-genome-wide multi-omics cancer subtyping. Cell Reports Methods. 2024; 4(6): 100781.

[122]

Wu J, Li C, Gensheimer M, Padda S, Kato F, Shirato H, et al. Radiological tumor classification across imaging modality and histology. Nat Mach Intell. 2021; 3: 787-98.

[123]

Saldanha OL, Loeffler CML, Niehues JM, van Treeck M, Seraphin TP, Hewitt KJ, et al. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis Oncol. 2023; 7(1): 35.

[124]

Gore S, Azad RK. CancerNet: a unified deep learning network for pan-cancer diagnostics. BMC Bioinformatics. 2022; 23(1): 229.

[125]

Wu P, Li D, Zhang C, Dai B, Tang X, Liu J, et al. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett. 2024; 588: 216655.

[126]

Divate M, Tyagi A, Richard DJ, Prasad PA, Gowda H, Nagaraj SH. Deep Learning-Based Pan-Cancer Classification Model Reveals Tissue-of-Origin Specific Gene Expression Signatures. Cancers (Basel). 2022; 14(5): 1185.

[127]

Zhao D, Kim DY, Chen P, Yu P, Ho S, Cheng SW, et al. Pan-Cancer Survival Classification With Clinicopathological and Targeted Gene Expression Features. Cancer Inform. 2021; 20: 11769351211035137.

[128]

Li B, Nabavi S. A multimodal graph neural network framework for cancer molecular subtype classification. BMC Bioinformatics. 2024; 25(1): 27.

[129]

Hossain SMM, Khatun L, Ray S, Mukhopadhyay A. Pan-cancer classification by regularized multi-task learning. Sci Rep. 2021; 11(1): 24252.

[130]

Wang J, Dai X, Luo H, Yan C, Zhang G, Luo J. MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model. Front Genet. 2021; 12: 670232.

[131]

Ning W, Wu T, Wu C, Wang S, Tao Z, Wang G, et al. Accurate prediction of pan-cancer types using machine learning with minimal number of DNA methylation sites. J Mol Cell Biol. 2023; 15(4): mjad023.

[132]

Tian F, Liu D, Wei N, Fu Q, Sun L, Liu W, et al. Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nat Med. 2024; 30(5): 1309-19.

[133]

Du Y, Shi J, Wang J, Xun Z, Yu Z, Sun H, et al. Integration of Pan-Cancer Single-Cell and Spatial Transcriptomics Reveals Stromal Cell Features and Therapeutic Targets in Tumor Microenvironment. Cancer Res. 2024; 84(2): 192-210.

[134]

Tang F, Li J, Qi L, Liu D, Bo Y, Qin S, et al. A pan-cancer single-cell panorama of human natural killer cells. Cell. 2023; 186(19): 4235-51. e20.

[135]

Zhang W, Maeser D, Lee A, Huang Y, Gruener RF, Abdelbar IG, et al. Integration of Pan-Cancer Cell Line and Single-Cell Transcriptomic Profiles Enables Inference of Therapeutic Vulnerabilities in Heterogeneous Tumors. Cancer Res. 2024; 84(12): 2021-33.

[136]

Huang X, Hu M, Sun T, Li J, Zhou Y, Yan Y, et al. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. Cell Host Microbe. 2023; 31(11): 1930-43. e4.

[137]

Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell. 2024; 187(7): 1651-65. e21.

[138]

Battaglia TW, Mimpen IL, Traets JJH, van Hoeck A, Zeverijn LJ, Geurts BS, et al. A pan-cancer analysis of the microbiome in metastatic cancer. Cell. 2024; 187(9): 2324-35. e19.

[139]

Chen KY, Srinivasan T, Lin C, Tung KL, Gao Z, Hsu DS, et al. Single-Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018: 2378-81.

[140]

Li Z, Xu H, Yu L, Wang J, Meng Q, Mei H, et al. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin Transl Med. 2022; 12(7): e970.

[141]

Larsen BM, Kannan M, Langer LF, Leibowitz BD, Bentaieb A, Cancino A, et al. A pan-cancer organoid platform for precision medicine. Cell Rep. 2021; 36(4): 109429.

[142]

Zhao L, Qi X, Chen Y, Qiao Y, Bu D, Wu Y, et al. Biological knowledge graph-guided investigation of immune therapy response in cancer with graph neural network. Brief Bioinform. 2023; 24(2): bbad023.

[143]

Zhang P, Zhang Q, Li S. Advancing Cancer Prevention through an AI-Based Integration of Traditional and Western Medicine. Cancer Discov. 2024; 14(11): 2033-6.

[144]

Wang F-A, Zhuang Z, Gao F, He R, Zhang S, Wang L, et al. TMO-Net: an explainable pretrained multi-omics model for multi-task learning in oncology. Genome Biology. 2024; 25(1): 149.

[145]

Chang J, Zheng T, Wu C. Early Cancer Detection Through Comprehensive Mapping of Dynamic Tumorigenesis. Cancer Discov. 2024; 14(11): 2037-40.

[146]

Liu S, Wang Y, Feng J, Liu Z, Zhou S. Building an Organ-Wide Macroscopic View of Cancer Hallmarks. Cancer Discov. 2024; 14(11): 2041-6.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/