Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a “hit-and-run” paradigm

Bing He , Yiyang Hu , Yuyun Wu , Chao Wang , Limin Gao , Chunli Gong , Zhibin Li , Nannan Gao , Huan Yang , Yufeng Xiao , Shiming Yang

Cancer Communications ›› 2025, Vol. 45 ›› Issue (5) : 608 -631.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (5) : 608 -631. DOI: 10.1002/cac2.70004
ORIGINAL ARTICLE

Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a “hit-and-run” paradigm

Author information +
History +
PDF

Abstract

Background: Helicobacter pylori (H. pylori) infection contributes significantly to gastric cancer (GC) progression. The intrinsic mechanisms of H. pylori-host interactions and their role in promoting GC progression need further investigation. In this study, we explored the potential role of fat mass and obesity-associated protein (FTO) in mediating Cytotoxin-associated gene A (CagA)-induced GC progression.

Methods: The effects of H. pylori infection on N6-methyladenosine (m6A) modification were evaluated in both human samples and GC cell lines. The function of FTO in the progression of GC was elucidated through in vitro and in vivo studies. A series of techniques, including methylated RNA immunoprecipitation sequencing, RNA sequencing, RNA binding protein immunoprecipitation, and chromatin immunoprecipitation assays, were utilized to investigate the mechanism by which FTO mediates the capacity of cagA-positive H. pylori to promote GC progression. Furthermore, the therapeutic potential of the FTO inhibitor meclofenamic acid (MA) in impeding GC progression was evaluated across GC cells, animal models, and human GC organoids.

Results: Infection with cagA-positive H. pylori upregulated the expression of FTO, which was essential for CagA-mediated GC metastasis and significantly associated with a poor prognosis in GC patients. Mechanistically, CagA delivered by H. pylori enhanced FTO transcription via Jun proto-oncogene. Elevated FTO induced demethylation of m6A and inhibited the degradation of heparin-binding EGF-like growth factor (HBEGF), thereby facilitating the epithelial-mesenchymal transition (EMT) process in GC cells. Interestingly, eradication of H. pylori did not fully reverse the increases in FTO and HBEGF levels induced by cagA-positive H. pylori. However, treatment with a combination of antibiotics and MA substantially inhibited cagA-positive H. pylori-induced EMT and prevented GC metastasis.

Conclusion: Our study revealed that FTO mediates the “hit-and-run” mechanism of CagA-induced GC progression, which suggests that the therapeutic targeting of FTO could offer a promising approach to the prevention of CagA-induced cancer progression.

Keywords

Epithelial-Mesenchymal transition / FTO / Gastric cancer / Helicobacter pylori / m6A modification

Cite this article

Download citation ▾
Bing He, Yiyang Hu, Yuyun Wu, Chao Wang, Limin Gao, Chunli Gong, Zhibin Li, Nannan Gao, Huan Yang, Yufeng Xiao, Shiming Yang. Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a “hit-and-run” paradigm. Cancer Communications, 2025, 45(5): 608-631 DOI:10.1002/cac2.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinicalMedicine. 2022; 47: 101404.

[2]

Huang J, Lucero-Prisno DE, Zhang L, Xu W, Wong SH, Ng SC, et al. Updated epidemiology of gastrointestinal cancers in East Asia. Nat Rev Gastroenterol Hepatol. 2023; 20(5): 271-287.

[3]

Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay AC-Y, et al. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe. 2023; 31(8): 1345-1358.

[4]

Usui Y, Taniyama Y, Endo M, Koyanagi YN, Kasugai Y, Oze I, et al. Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. N Engl J Med. 2023; 388(13): 1181-1190.

[5]

Noto JM, Piazuelo MB, Shah SC, Romero-Gallo J, Hart JL, Di C, et al. Iron deficiency linked to altered bile acid metabolism promotes Helicobacter pylori-induced inflammation-driven gastric carcinogenesis. J Clin Invest. 2022; 132(10): e147822.

[6]

Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010; 7(11): 629-641.

[7]

Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol. 2020; 17(1): 50-63.

[8]

Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008; 68(2): 379-387.

[9]

Cao L, Zhu S, Lu H, Soutto M, Bhat N, Chen Z, et al. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology. 2022; 162(6): 1716-1731.

[10]

Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB, Wilson KT, et al. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells. J Clin Invest. 2020; 130(5): 2422-2434.

[11]

Suzuki G, Cullings H, Fujiwara S, Hattori N, Matsuura S, Hakoda M, et al. Low-positive antibody titer against Helicobacter pylori cytotoxin-associated gene A (CagA) may predict future gastric cancer better than simple seropositivity against H. pylori CagA or against H. pylori. Cancer Epidemiol Biomarkers Prev. 2007; 16(6): 1224-1228.

[12]

Li D, Jiang S-F, Lei NY, Shah SC, Corley DA. Effect of Helicobacter pylori Eradication Therapy on the Incidence of Noncardia Gastric Adenocarcinoma in a Large Diverse Population in the United States. Gastroenterology. 2023; 165(2): 391-401.

[13]

Ford AC, Yuan Y, Moayyedi P. Long-Term Impact of Helicobacter pylori Eradication Therapy on Gastric Cancer Incidence and Mortality in Healthy Infected Individuals: A Meta-Analysis Beyond 10 Years of Follow-Up. Gastroenterology. 2022; 163(3): 754-756.

[14]

Chiang T-H, Chang W-J, Chen SL-S, Yen AM-F, Fann JC-Y, Chiu SY-H, et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut. 2021; 70(2): 243-250.

[15]

Yan L, Chen Y, Chen F, Tao T, Hu Z, Wang J, et al. Effect of Helicobacter pylori Eradication on Gastric Cancer Prevention: Updated Report From a Randomized Controlled Trial With 26.5 Years of Follow-up. Gastroenterology. 2022; 163(1): 154-162.

[16]

Rokkas T, Pistiolas D, Sechopoulos P, Robotis I, Margantinis G. The long-term impact of Helicobacter pylori eradication on gastric histology: a systematic review and meta-analysis. Helicobacter. 2007; 12(Suppl 2): 32-8.

[17]

Chen H-N, Wang Z, Li X, Zhou Z-G. Helicobacter pylori eradication cannot reduce the risk of gastric cancer in patients with intestinal metaplasia and dysplasia: evidence from a meta-analysis. Gastric Cancer. 2016; 19(1): 166-175.

[18]

Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe. 2021; 29(6): 941-958.

[19]

Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014; 15(3): 306-316.

[20]

Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, et al. N 6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science. 2019; 365(6458): 1171-1176.

[21]

Cui Y-H, Yang S, Wei J, Shea CR, Zhong W, Wang F, et al. Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 2021; 12(1): 2183.

[22]

Lin J, Zhan G, Liu J, Maimaitiyiming Y, Deng Z, Li B, et al. YTHDF2-mediated regulations bifurcate BHPF-induced programmed cell deaths. Natl Sci Rev. 2023; 10(12): nwad227.

[23]

Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, et al. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology. 2023; 165(2): 445-462.

[24]

Qing Y, Dong L, Gao L, Li C, Li Y, Han L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol Cell. 2021; 81(5): 922-939.

[25]

Wang L, Dou X, Chen S, Yu X, Huang X, Zhang L, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023; 41(7): 1294-1308.

[26]

Hu Y, Gong C, Li Z, Liu J, Chen Y, Huang Y, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022; 21(1): 34.

[27]

Zhang X, Soutto M, Chen Z, Bhat N, Zhu S, Eissmann MF, et al. Induction of Fibroblast Growth Factor Receptor 4 by Helicobacter pylori via Signal Transducer and Activator of Transcription 3 With a Feedforward Activation Loop Involving SRC Signaling in Gastric Cancer. Gastroenterology. 2022; 163(3): 620-636.

[28]

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12): 885-887.

[29]

Chen S, Fan L, Lin Y, Qi Y, Xu C, Ge Q, et al. Bifidobacterium adolescentis orchestrates CD143+ cancer-associated fibroblasts to suppress colorectal tumorigenesis by Wnt signaling-regulated GAS1. Cancer Commun (Lond). 2023; 43(9): 1027-1047.

[30]

Shen S, Zhang R, Jiang Y, Li Y, Lin L, Liu Z, et al. Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types. Mol Cancer. 2021; 20(1): 67.

[31]

Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, et al. Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types. Mol Cancer. 2019; 18(1): 137.

[32]

Zhou Y, Wang Q, Deng H, Xu B, Zhou Y, Liu J, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis. 2022; 13(1): 72.

[33]

Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem. 2000; 275(21): 16064-16072.

[34]

Cristescu R, Lee J, Nebozhyn M, Kim K-M, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015; 21(5): 449-456.

[35]

Salt MB, Bandyopadhyay S, McCormick F. Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov. 2014; 4(2): 186-199.

[36]

Stoll SW, Rittié L, Johnson JL, Elder JT. Heparin-binding EGF-like growth factor promotes epithelial-mesenchymal transition in human keratinocytes. J Invest Dermatol. 2012; 132(9): 2148-2157.

[37]

Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH, et al. Helicobacter pylori potentiates epithelial: mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut. 2010; 59(8): 1037-1045.

[38]

Smith JP, Pozzi A, Dhawan P, Singh AB, Harris RC. Soluble HB-EGF induces epithelial-to-mesenchymal transition in inner medullary collecting duct cells by upregulating Snail-2. Am J Physiol Renal Physiol. 2009; 296(5): F957-F65.

[39]

Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022; 40(12): 1566-1582.

[40]

da Costa BR, Pereira TV, Saadat P, Rudnicki M, Iskander SM, Bodmer NS, et al. Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis: network meta-analysis. BMJ. 2021; 375: n2321.

[41]

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015; 43(1): 373-384.

[42]

Yang L, Kartsonaki C, Yao P, de Martel C, Plummer M, Chapman D, et al. The relative and attributable risks of cardia and non-cardia gastric cancer associated with Helicobacter pylori infection in China: a case-cohort study. Lancet Public Health. 2021; 6(12): e888-e96.

[43]

Malfertheiner P, Camargo MC, El-Omar E, Liou J-M, Peek R, Schulz C, et al. Helicobacter pylori infection. Nat Rev Dis Primers. 2023; 9(1): 19.

[44]

Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W, et al. N6-Methyladenosine-Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through WNT/β-Catenin and Hippo Signaling Pathways. Gastroenterology. 2023; 164(6): 990-1005.

[45]

Kim GW, Imam H, Khan M, Mir SA, Kim S-J, Yoon SK, et al. HBV-Induced Increased N6 Methyladenosine Modification of PTEN RNA Affects Innate Immunity and Contributes to HCC. Hepatology. 2021; 73(2): 533-547.

[46]

Wang R, Li B, Huang B, Li Y, Liu Q, Lyu Z, et al. Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis. Gastroenterology. 2024; 167(4): 733-749.

[47]

Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021; 33(6): 1221-1233.

[48]

Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase. Cancer Cell. 2017; 31(1): 127-141.

[49]

Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019; 18(1): 46.

[50]

Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019; 10(1): 1858.

[51]

Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021; 589(7842): 448-455.

[52]

Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020; 21(6): 341-352.

[53]

Oh SC, Sohn BH, Cheong J-H, Kim S-B, Lee JE, Park KC, et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun. 2018; 9(1): 1777.

[54]

Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, et al. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ. 2021; 28(5): 1669-1687.

[55]

Cursons J, Leuchowius K-J, Waltham M, Tomaskovic-Crook E, Foroutan M, Bracken CP, et al. Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Commun Signal. 2015; 13: 26.

[56]

Luo P, Yan H, Chen X, Zhang Y, Zhao Z, Cao J, et al. s-HBEGF/SIRT1 circuit-dictated crosstalk between vascular endothelial cells and keratinocytes mediates sorafenib-induced hand-foot skin reaction that can be reversed by nicotinamide. Cell Res. 2020; 30(9): 779-793.

[57]

Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell. 2019; 35(4): 677-691.

[58]

Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell. 2020; 38(1): 79-96.

[59]

Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J, et al. Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun (Lond). 2023; 43(1): 123-149.

[60]

Li S, Guo D, Sun Q, Zhang L, Cui Y, Liu M, et al. MAPK4 silencing in gastric cancer drives liver metastasis by positive feedback between cancer cells and macrophages. Exp Mol Med. 2023; 55(2): 457-469.

[61]

Wang G, Wang H, Ji X, Wang T, Zhang Y, Jiang W, et al. Intratumoral microbiome is associated with gastric cancer prognosis and therapy efficacy. Gut Microbes. 2024; 16(1): 2369336.

[62]

Zeng R, Gou H, Lau HCH, Yu J. Stomach microbiota in gastric cancer development and clinical implications. Gut. 2024; 73(12): 2062-2073.

[63]

Wang WH, Huang JQ, Zheng GF, Lam SK, Karlberg J, Wong BC-Y. Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2003; 95(23): 1784-1791.

[64]

Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett WC, et al. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016; 2(6): 762-769.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/