Breaking barriers: Smart vaccine platforms for cancer immunomodulation

Mohammad Mahmoudi Gomari , Taha Ghantabpour , Nima Pourgholam , Neda Rostami , Stephen M. Hatfield , Farzaneh Namazifar , Shadi Abkhiz , Seyed Sadegh Eslami , Mahsa Ramezanpour , Mahsa Darestanifarahani , Igor Astsaturov , Sidi A. Bencherif

Cancer Communications ›› 2025, Vol. 45 ›› Issue (5) : 529 -571.

PDF
Cancer Communications ›› 2025, Vol. 45 ›› Issue (5) : 529 -571. DOI: 10.1002/cac2.70002
REVIEW

Breaking barriers: Smart vaccine platforms for cancer immunomodulation

Author information +
History +
PDF

Abstract

Despite significant advancements in cancer treatment, current therapies often fail to completely eradicate malignant cells. This shortfall underscores the urgent need to explore alternative approaches such as cancer vaccines. Leveraging the immune system's natural ability to target and kill cancer cells holds great therapeutic potential. However, the development of cancer vaccines is hindered by several challenges, including low stability, inadequate immune response activation, and the immunosuppressive tumor microenvironment, which limit their efficacy. Recent progress in various fields, such as click chemistry, nanotechnology, exosome engineering, and neoantigen design, offer innovative solutions to these challenges. These achievements have led to the emergence of smart vaccine platforms (SVPs), which integrate protective carriers for messenger ribonucleic acid (mRNA) with functionalization strategies to optimize targeted delivery. Click chemistry further enhances SVP performance by improving the encapsulation of mRNA antigens and facilitating their precise delivery to target cells. This review highlights the latest developments in SVP technologies for cancer therapy, exploring both their opportunities and challenges in advancing these transformative approaches.

Keywords

cancer / click chemistry / mRNA vaccines / smart vaccine platforms / targeted delivery

Cite this article

Download citation ▾
Mohammad Mahmoudi Gomari, Taha Ghantabpour, Nima Pourgholam, Neda Rostami, Stephen M. Hatfield, Farzaneh Namazifar, Shadi Abkhiz, Seyed Sadegh Eslami, Mahsa Ramezanpour, Mahsa Darestanifarahani, Igor Astsaturov, Sidi A. Bencherif. Breaking barriers: Smart vaccine platforms for cancer immunomodulation. Cancer Communications, 2025, 45(5): 529-571 DOI:10.1002/cac2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-49.

[2]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023; 73(1): 17-48.

[3]

Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 2021; 269: 119087.

[4]

Choupani E, Mahmoudi Gomari M, Zanganeh S, Nasseri S, Haji-Allahverdipoor K, Rostami N, et al. Newly Developed Targeted Therapies Against the Androgen Receptor in Triple-Negative Breast Cancer: A Review. Pharmacol Rev. 2023; 75(2): 309-27.

[5]

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020; 20(11): 651-68.

[6]

Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012; 4(127): 127ra37-ra37.

[7]

Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917-27.

[8]

Burris HA, Patel MR, Cho DC, Clarke JM, Gutierrez M, Zaks TZ, et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. J Clin Oncol. 2019; 37: 2523.

[9]

Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21(6): 360-78.

[10]

Vermaelen K. Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol. 2019; 10: 8.

[11]

Colombani T, Eggermont LJ, Hatfield SM, Rogers ZJ, Rezaeeyazdi M, Memic A, et al. Oxygen-Generating Cryogels Restore T Cell Mediated Cytotoxicity in Hypoxic Tumors. Adv Funct Mater. 2021; 31(37): 2102234.

[12]

Bhatt K, Nukovic A, Colombani T, Bencherif SA. Biomaterial-assisted local oxygenation safeguards the prostimulatory phenotype and functions of human dendritic cells in hypoxia. Front Immunol. 2023; 7(14): 1278397.

[13]

Colombani T, Eggermont LJ, Rogers ZJ, McKay LGA, Avena LE, Johnson RI, et al. Biomaterials and Oxygen Join Forces to Shape the Immune Response and Boost COVID-19 Vaccines. Adv Sci. 2021; 8(18): 2100316.

[14]

Bhatt K, Eggermont LJ, Bencherif SA. Chapter Three - Polymeric scaffolds for antitumor immune cell priming. In: Amiji MM, Milane LS, editors. Engineering Technologies and Clinical Translation: Academic Press; 2022. p. 63-95.

[15]

Bencherif SA, Warren Sands R, Ali OA, Li WA, Lewin SA, Braschler TM, et al. Injectable cryogel-based whole-cell cancer vaccines. Nat Commun. 2015; 6(1): 7556.

[16]

Colombani T, Bhatt K, Epel B, Kotecha M, Bencherif SA. HIF-stabilizing biomaterials: from hypoxia-mimicking to hypoxia-inducing. Mater Adv. 2023; 4(15): 3084-90.

[17]

Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, et al. Controlling Pericellular Oxygen Tension in Cell Culture Reveals Distinct Breast Cancer Responses to Low Oxygen Tensions. Adv Sci. 11(30): 2402557.

[18]

Melief CJ, Welters MJ, Vergote I, Kroep JR, Kenter GG, Ottevanger PB, et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci Transl Med. 2020; 12(535): eaaz8235.

[19]

Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol. 2019; 5(1): 67-73.

[20]

Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021; 20(1): 1-23.

[21]

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363(5): 411-22.

[22]

Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014; 15(1): 59-68.

[23]

Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014; 15(8): 829-40.

[24]

Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016; 17(11): 1599-611.

[25]

Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, et al. Randomized, placebo-controlled, Phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697). J Clin Oncol. 2015; 33(34): 4066.

[26]

Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer. 2020; 8(2): e001204.

[27]

Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018; 48(3): 399-416.

[28]

van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016; 16(4): 219-33.

[29]

Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma: a phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011; 253(2): 328.

[30]

Rocconi RP, Stevens EE, Bottsford-Miller JN, Ghamande SA, Aaron P, Wallraven G, et al. A phase I combination study of vigil and atezolizumab in recurrent/refractory advanced-stage ovarian cancer: Efficacy assessment in BRCA1/2-wt patients. J Clin Oncol. 2020; 38(15): 3002.

[31]

Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: An effective strategy for eradication of cancer cells. Immunotherapy. 2022; 14(8): 639-54.

[32]

Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2021; 11: 620374.

[33]

Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022; 23(10): e450-e8.

[34]

Teo SP. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2022; 35(6): 947-51.

[35]

Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017; 24(3): 133-43.

[36]

Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016; 7(5): 319-34.

[37]

Abd-Aziz N, Poh CL. Development of Peptide-Based Vaccines for Cancer. J Oncol. 2022; 15(2022): 9749363.

[38]

Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022; 15(1): 28.

[39]

Zahedipour F, Jamialahmadi K, Zamani P, Reza Jaafari M. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol. 2023; 123: 110721.

[40]

Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023; 8(1): 450.

[41]

Tosch C, Bastien B, Barraud L, Grellier B, Nourtier V, Gantzer M, et al. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer. 2017; 5(1): 70.

[42]

Tornesello AL, Tagliamonte M, Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particles as preventive and therapeutic cancer vaccines. Vaccines. 2022; 10(2): 227.

[43]

Wu H, Fu X, Zhai Y, Gao S, Yang X, Zhai G. Development of effective tumor vaccine strategies based on immune response cascade reactions. Adv Healthc Mater. 2021; 10(13): 2100299.

[44]

Rostami N, Faridghiasi F, Ghebleh A, Noei H, Samadzadeh M, Gomari MM, et al. Design, Synthesis, and Comparison of PLA-PEG-PLA and PEG-PLA-PEG Copolymers for Curcumin Delivery to Cancer Cells. Polymers. 2023; 15(14): 3133.

[45]

Rostami N, Gomari MM, Abdouss M, Moeinzadeh A, Choupani E, Davarnejad R, et al. Synthesis and Characterization of Folic Acid-Functionalized DPLA-co-PEG Nanomicelles for the Targeted Delivery of Letrozole. ACS Appl Bio Mater. 2023; 6(5): 1806-15.

[46]

Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine. 2019; 14(5): 627-48.

[47]

Li X, Qi J, Wang J, Hu W, Zhou W, Wang Y, et al. Nanoparticle technology for mRNA: Delivery strategy, clinical application and developmental landscape. Theranostics. 2024; 14(2): 738-60.

[48]

Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev. 2016; 99: 52-69.

[49]

He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials. 2010; 31(6): 1085-92.

[50]

Baharom F, Ramirez-Valdez RA, Khalilnezhad A, Khalilnezhad S, Dillon M, Hermans D, et al. Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell. 2022; 185(23): 4317-32. e15.

[51]

Baharom F, Ramirez-Valdez RA, Tobin KK, Yamane H, Dutertre C-A, Khalilnezhad A, et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat Immunol. 2021; 22(1): 41-52.

[52]

Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res. 2022; 39(11): 2635-71.

[53]

El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, et al. Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines. 2024; 12(3): 280.

[54]

Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol. 2021; 12: 711565.

[55]

Negahdaripour M, Vakili B, Nezafat N. Exosome-based vaccines and their position in next generation vaccines. Int Immunopharmacol. 2022; 113: 109265.

[56]

Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007; 36(8): 1249-62.

[57]

Chen M-M, Kopittke PM, Zhao F-J, Wang P. Applications and opportunities of click chemistry in plant science. Trends Plant Sci. 2024; 29(2): 167-78.

[58]

Wang Y, Hu Q. Bio-Orthogonal Chemistry in Cell Engineering. Adv NanoBiomed Res. 2023; 3(3): 2200128.

[59]

Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, et al. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem. 2012; 124(47): 12006-10.

[60]

Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, et al. Development of a Cancer Vaccine Using In Vivo Click-Chemistry-Mediated Active Lymph Node Accumulation for Improved Immunotherapy. Adv Mater. 2021; 33(20): 2006007.

[61]

Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. npj Vaccines. 2019; 4(1): 7.

[62]

Kramps T, Elbers K. Introduction to RNA vaccines. Methods Mol Biol. 2017; 1499: 1-11.

[63]

Huang L, Zhang L, Li W, Li S, Wen J, Li H, et al. Advances in development of mRNA-Based therapeutics. mRNA Vaccines: Springer; 2020. p. 147-66.

[64]

Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018; 10(436): eaao5931.

[65]

Fiedler K, Lazzaro S, Lutz J, Rauch S, Heidenreich R. mRNA cancer vaccines. Recent Results Cancer Res. 2016; 209: 61-85.

[66]

Wang C, Liu H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Sci Rep. 2022; 12(1): 7259.

[67]

Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, et al. mRNA-based cancer vaccines: A therapeutic strategy for the treatment of melanoma patients. Vaccines. 2021; 9(10): 1060.

[68]

Buonaguro L, Tagliamonte M. Selecting target antigens for cancer vaccine development. Vaccines. 2020; 8(4): 615.

[69]

Nishida S, Ishikawa T, Egawa S, Koido S, Yanagimoto H, Ishii J, et al. Combination gemcitabine and WT1 peptide vaccination improves progression-free survival in advanced pancreatic ductal adenocarcinoma: a phase II randomized studywt1 vaccine Plus GEM in pancreatic cancer. Cancer Immunol Res. 2018; 6(3): 320-31.

[70]

Okarvi SM, AlJammaz I. Development of the tumor-specific antigen-derived synthetic peptides as potential candidates for targeting breast and other possible human carcinomas. Molecules. 2019; 24(17): 3142.

[71]

Urosevic M, Braun B, Willers J, Burg G, Dummer R. Expression of melanoma-associated antigens in melanoma cell cultures. Exp Dermatol. 2005; 14(7): 491-7.

[72]

Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother. 2010; 33(6): 639-47.

[73]

Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg. 2013; 258(6): 879-86.

[74]

Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol. 2011; 5(2): 164-82.

[75]

Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015; 125(9): 3401-12.

[76]

Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol. 2016; 130: 25-74.

[77]

van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013; 31(32): 439-42.

[78]

Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019; 9(4): 375-82. e4.

[79]

Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017; 547(7662): 217-21.

[80]

Fang Y, Mo F, Shou J, Wang H, Luo K, Zhang S, et al. A Pan-cancer Clinical Study of Personalized Neoantigen Vaccine Monotherapy in Treating Patients with Various Types of Advanced Solid TumorsNeoantigen Vaccination Trial for Advanced Tumor Patients. Clin Cancer Res. 2020; 26(17): 4511-20.

[81]

Shou J, Mo F, Zhang S, Lu L, Han N, Liu L, et al. Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: Promising modality for future cancer immunotherapy. Front Immunol. 2022; 13: 1000681.

[82]

Wang L, Tang J, Chen X, Zhao J, Tang W, Liao B, et al. Therapy of genomic unstable solid tumours (WHO grade 3/4) in clinical stage III/IV using individualised neoantigen tumour peptides-INP trial (individualised neoantigen tumour peptides immunotherapy): study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ open. 2022; 12(6): e055742.

[83]

Awad MM, Govindan R, Balogh KN, Spigel DR, Garon EB, Bushway ME, et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell. 2022; 40(9): 1010-26. e11.

[84]

Gale RP. Can Immune Therapy Cure Acute Myeloid Leukemia? Curr Treat Options Oncol. 2023; 24(5): 381-6.

[85]

Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019; 565(7738): 234-9.

[86]

Nelde A, Rammensee H-G, Walz JS. The peptide vaccine of the future. Mol Cell Proteomics. 2021; 20: 100022.

[87]

Aikins ME, Xu C, Moon JJ. Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Acc Chem Res. 2020; 53(10): 2094-105.

[88]

Dombroski JA, Jyotsana N, Crews DW, Zhang Z, King MR. Fabrication and Characterization of Tumor Nano-Lysate as a Preventative Vaccine for Breast Cancer. Langmuir. 2020; 36(23): 6531-9.

[89]

Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci. 2020; 15(5): 576-90.

[90]

Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration (Beijing). 2023; 3(3): 20210263.

[91]

Guo J, Tang L, Li K, Ma Q, Luo S, Cheng R, et al. Application of Nanotechnology in Therapeutic Cancer Vaccines. Adv Biomed Res. 2023; 3(7): 2200122.

[92]

Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, et al. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS Nano. 2023; 18(5): 3352.

[93]

Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, et al. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology. 2024; 22(1): 61.

[94]

Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol. 2023; 14: 1125253.

[95]

Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, et al. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol. 2023; 253: 126808.

[96]

Yang G, Zhou D, Dai Y, Li Y, Wu J, Liu Q, et al. Construction of PEI-EGFR-PD-L1-siRNA dual functional nano-vaccine and therapeutic efficacy evaluation for lung cancer. Thorac Cancer. 2022; 13(21): 2941-50.

[97]

Wallis J, Katti P, Martin AM, Hills T, Seymour LW, Shenton DP, et al. A liposome-based cancer vaccine for a rapid and high-titre anti-ErbB-2 antibody response. Eur J Pharm Sci. 2020; 152: 105456.

[98]

Sayour EJ, Mendez-Gomez HR, Mitchell DA. Cancer Vaccine Immunotherapy with RNA-Loaded Liposomes. Int J Mol Sci. 2018; 19(10): 2890.

[99]

Liang J, Zhao X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol Med. 2021; 18(2): 352-71.

[100]

Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunol Immunother. 2011; 60(5): 629-38.

[101]

Nakamura T, Haloho SEE, Harashima H. Intravenous liposomal vaccine enhances CTL generation, but not until antigen presentation. J Control Release. 2022; 343: 1-12.

[102]

Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E, et al. Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology. 2019; 8(4): e1560919.

[103]

Shi L, Yang J, Nie Y, Huang Y, Gu H. Hybrid mRNA Nano Vaccine Potentiates Antigenic Peptide Presentation and Dendritic Cell Maturation for Effective Cancer Vaccine Therapy and Enhances Response to Immune Checkpoint Blockade. Adv Healthc Mater. 2023; 12(32): e2301261.

[104]

Huang T, Peng L, Han Y, Wang D, He X, Wang J, et al. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol. 2022; 13: 922301.

[105]

Han J, Lim J, Wang C-PJ, Han J-H, Shin HE, Kim S-N, et al. Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy. Nano Converg. 2023; 10(1): 36.

[106]

Yang EC, Divine R, Miranda MC, Borst AJ, Sheffler W, Zhang JZ, et al. Computational design of non-porous pH-responsive antibody nanoparticles. Nat Struct Mol Biol. 2024; 31(9): 1404-12.

[107]

Ueda G, Antanasijevic A, Fallas JA, Sheffler W, Copps J, Ellis D, et al. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elife. 2020; 9: e57659.

[108]

Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park Y-J, Moin SM, et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature. 2021; 592(7855): 623-8.

[109]

Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell. 2021; 184(21): 5432-47.e16.

[110]

Divine R, Dang HV, Ueda G, Fallas JA, Vulovic I, Sheffler W, et al. Designed proteins assemble antibodies into modular nanocages. Science. 2021; 372(6537): eabd9994.

[111]

Hendricks GG, Grigoryan L, Navarro MJ, Catanzaro NJ, Hubbard ML, Powers JM, et al. Computationally designed mRNA-launched protein nanoparticle vaccines. bioRxiv. 2024:2024.07.22.604655.

[112]

Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, et al. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Front Nanotechnol. 2022; 4: 948705.

[113]

Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, et al. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol. 2023; 242: 124697.

[114]

Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, et al. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnology. 2023; 21(1): 212.

[115]

Anbusagar NRR, Palanikumar K, Ponshanmugakumar A. 2 - Preparation and properties of nanopolymer advanced composites: A review. In: Jawaid M, Khan MM, editors. Polymer-based Nanocomposites for Energy and Environmental Applications: Woodhead Publishing; 2018. p. 27-73.

[116]

Xu C, Qiao M, Huo X, Liao Z, Su J. An Oral Microencapsulated Vaccine Loaded by Sodium Alginate Effectively Enhances Protection Against GCRV Infection in Grass Carp (Ctenopharyngodon idella). Front Immunol. 2022; 13: 848958.

[117]

Gheybi E, Asoodeh A, Amani J. Preparation of chitosan nanoparticle containing recombinant CD44v antigen and evaluation of its immunization capacity against breast cancer in BALB/c mice. BMC Cancer. 2023; 23(1): 134.

[118]

Song Y, Zhou Y, van Drunen Littel-van den Hurk S, Chen L. Cellulose-based polyelectrolyte complex nanoparticles for DNA vaccine delivery. Biomater Sci. 2014; 2(10): 1440-9.

[119]

Wang W, Liu X, Ding L, Jin HJ, Li X. RNA Hydrogel Combined with MnO(2) Nanoparticles as a Nano-Vaccine to Treat Triple Negative Breast Cancer. Front Chem. 2021; 9: 797094.

[120]

Gsib O, Duval JL, Goczkowski M, Deneufchatel M, Fichet O, Larreta-Garde V, et al. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering. Nanomaterials (Basel). 2017; 7(12): 436.

[121]

Kim J, Bencherif SA, Li WA, Mooney DJ. Cell-Friendly Inverse Opal-Like Hydrogels for a Spatially Separated Co-Culture System. Macromol Rapid Commun. 2014; 35(18): 1578-86.

[122]

Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. Prog Mater Sci. 2024; 143: 101248.

[123]

Memic A, Rezaeeyazdi M, Villard P, Rogers ZJ, Abdullah T, Colombani T, et al. Effect of Polymer Concentration on Autoclaved Cryogel Properties. Macromol Mater Eng. 2020; 305(5): 1900824.

[124]

Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, et al. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioact Mater. 2023; 29: 279-95.

[125]

Rana D, Colombani T, Saleh B, Mohammed HS, Annabi N, Bencherif SA. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Mater Today Bio. 2023; 19: 100572.

[126]

Rezaeeyazdi M, Colombani T, Eggermont LJ, Bencherif SA. Engineering hyaluronic acid-based cryogels for CD44-mediated breast tumor reconstruction. Mater Today Bio. 2022; 13: 100207.

[127]

Rogers ZJ, Zeevi MP, Koppes R, Bencherif SA. Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives. Bioelectricity. 2020; 2(3): 279-92.

[128]

Bencherif SA, Sheehan JA, Hollinger JO, Walker LM, Matyjaszewski K, Washburn NR. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels. J Biomed Mater Res A. 2009; 90A(1): 142-53.

[129]

Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney D. Rapid and Extensive Collapse from Electrically Responsive Macroporous Hydrogels. Adv Healthc Mater. 2014; 3(4): 500-7.

[130]

Yoon JA, Bencherif SA, Aksak B, Kim EK, Kowalewski T, Oh JK, et al. Thermoresponsive Hydrogel Scaffolds with Tailored Hydrophilic Pores. Chem Asian J. 2011; 6(1): 128-36.

[131]

Joshi Navare K, Colombani T, Rezaeeyazdi M, Bassous N, Rana D, Webster T, et al. Needle-injectable microcomposite cryogel scaffolds with antimicrobial properties. Sci Rep. 2020; 10(1): 18370.

[132]

Gsib O, Eggermont LJ, Egles C, Bencherif SA. Engineering a macroporous fibrin-based sequential interpenetrating polymer network for dermal tissue engineering. Biomater Sci. 2020; 8(24): 7106-16.

[133]

Rogers ZJ, Bencherif SA. Cryogelation and Cryogels. Gels. 2019; 5(4): 5040046

[134]

Mahdavi S, Amirsadeghi A, Jafari A, Niknezhad SV, Bencherif SA. Avian Egg: A Multifaceted Biomaterial for Tissue Engineering. Ind Eng Chem Res. 2021; 60(48): 17348-64.

[135]

Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chem Eng J. 2023; 471: 144400.

[136]

Rostami N, Gomari MM, Choupani E, Abkhiz S, Fadaie M, Eslami SS, et al. Exploring Advanced Clustered Regularly Interspaced Short Palindromic Repeat Delivery Technologies for Therapeutic Genome Editing. Small Sci. 2024; 4(10): 2400192.

[137]

Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, et al. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol. 2022; 10: 1024143.

[138]

Amreddy N, Babu A, Munshi A, Ramesh R. Chapter 5 - Poly(α-hydroxy acid)-Based Nanoparticles for Drug/Gene Delivery for Cancer Therapy. In: Kesharwani P, Paknikar KM, Gajbhiye V, editors. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics: Academic Press; 2019. p. 81-99.

[139]

Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers. 2024; 16(6): 843.

[140]

Le TMD, Yoon A-R, Thambi T, Yun C-O. Polymeric Systems for Cancer Immunotherapy: A Review. Front Immunol. 2022; 13: 826876.

[141]

Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, et al. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett. 2023; 45(9): 1053-72.

[142]

Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Mater Horiz. 2023; 10(2): 361-92.

[143]

Lee J, Neustrup MA, Slütter B, O'Mahony C, Bouwstra JA, van der Maaden K. Intradermal Vaccination with PLGA Nanoparticles via Dissolving Microneedles and Classical Injection Needles. Pharm Res. 2024; 41(2): 305-19.

[144]

Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016; 12(4): 1056-69.

[145]

Shukla R, Singh A, Pardhi V, Kashyap K, Dubey SK, Dandela R, et al. Chapter 11 - Dendrimer-Based Nanoparticulate Delivery System for Cancer Therapy. In: Kesharwani P, Paknikar KM, Gajbhiye V, editors. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics: Academic Press; 2019. p. 233-55.

[146]

Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 2018; 9(1): 1488497.

[147]

Wang X, Niu D, Hu C, Li P. Polyethyleneimine-Based Nanocarriers for Gene Delivery. Curr Pharm Des. 2015; 21(42): 6140-56.

[148]

Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci. 2018; 7(1): 14-30.

[149]

Nevagi RJ, Skwarczynski M, Toth I. Polymers for subunit vaccine delivery. Eur Polym J. 2019; 114: 397-410.

[150]

Scheerstra JF, Wauters AC, Tel J, Abdelmohsen LKEA, van Hest JCM. Polymersomes as a potential platform for cancer immunotherapy. Mater Today Adv. 2022; 13: 100203.

[151]

Song C, Noh YW, Lim YT. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response. Int J Nanomedicine. 2016; 11: 3753-64.

[152]

Lou PJ, Cheng WF, Chung YC, Cheng CY, Chiu LH, Young TH. PMMA particle-mediated DNA vaccine for cervical cancer. J Biomed Mater Res A. 2009; 88(4): 849-57.

[153]

Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly(propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug Chem. 2009; 20(2): 241-8.

[154]

Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules. 2022; 55(16): 6913-37.

[155]

El-Sayed N, Korotchenko E, Scheiblhofer S, Weiss R, Schneider M. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response. Int J Pharm. 2021; 593: 120123.

[156]

Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, et al. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat Commun. 2021; 12(1): 2935.

[157]

Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev. 2019; 144: 112-32.

[158]

Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, et al. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater. 2022; 13(4): 162.

[159]

Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater. 2024; 13(20): 2400323.

[160]

Dykman LA, Staroverov SA, Kozlov SV, Fomin AS, Chumakov DS, Gabalov KP, et al. Immunization of Mice with Gold Nanoparticles Conjugated to Thermostable Cancer Antigens Prevents the Development of Xenografted Tumors. Int J Mol Sci. 2022; 23(22): 14313.

[161]

Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment. Mol Pharm. 2018; 15(5): 1791-9.

[162]

Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life. 2023; 13(2): 466.

[163]

Patrick B, Akhtar T, Kousar R, Huang CC, Li XG. Carbon Nanomaterials: Emerging Roles in Immuno-Oncology. Int J Mol Sci. 2023; 24(7): 6600.

[164]

Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, et al. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ Res. 2023; 237(Pt 2): 117027.

[165]

Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K. Anticancer Activity of Biogenic Selenium Nanoparticles: Apoptotic and Immunogenic Cell Death Markers in Colon Cancer Cells. Cancers (Basel). 2021; 13(21): 5335.

[166]

Vinardell MP, Mitjans M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials (Basel). 2015; 5(2): 1004-21.

[167]

Sharma P, Jang NY, Lee JW, Park BC, Kim YK, Cho NH. Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy. Pharmaceutics. 2019; 11(10): 493.

[168]

Wang X, Li X, Ito A, Yoshiyuki K, Sogo Y, Watanabe Y, et al. Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo. Small. 2016; 12(26): 3510-5.

[169]

Nguyen TL, Cha BG, Choi Y, Im J, Kim J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials. 2020; 239: 119859.

[170]

An W, Defaus S, Andreu D, Rivera-Gil P. In Vivo Sustained Release of Peptide Vaccine Mediated by Dendritic Mesoporous Silica Nanocarriers. Front immunol. 2021; 16(12): 684612.

[171]

Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021; 179: 113914.

[172]

Nguyen TL, Choi Y, Kim J. Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. Adv Mater. 2019; 31(34): e1803953.

[173]

Li X, Wang X, Ito A, Tsuji NM. A nanoscale metal organic frameworks-based vaccine synergises with PD-1 blockade to potentiate anti-tumour immunity. Nat Commun. 2020; 11(1): 3858.

[174]

Kroll AV, Jiang Y, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic Nanoparticle Vaccines for Cancer Therapy. Adv Biosyst. 2019; 3(1): e1800219.

[175]

Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol. 2019; 10: 1264.

[176]

Zhang Y, Lu Y, Xu Y, Zhou Z, Li Y, Ling W, et al. Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics [Internet]. 2023; 15(2): 368.

[177]

Mondal J, Revuri V, Hasan MN, Lee Y-k. Chapter EIGHT - Bio inspired materials for nonviral vaccine delivery. In: Nurunnabi M, editor. Bioinspired and Biomimetic Materials for Drug Delivery: Woodhead Publishing; 2021. p. 139-70.

[178]

Luo G-F, Chen W-H, Zeng X, Zhang X-Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chemical Society Reviews. 2021; 50(2): 945-85.

[179]

Collins SM, Brown AC. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front Immunol. 2021; 12: 733064.

[180]

Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)—Advanced antigen and drug delivery system. Vaccine. 2010; 28(36): 5760-7.

[181]

Park S-Y. Chemically induced bacterial ghosts: a novel approach for advancing biomedical applications. Mol Cell Toxicol. 2023; 19(4): 657-65.

[182]

Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, et al. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics. 2021; 13(11): 1892.

[183]

Batah AM, Ahmad TA. The development of ghost vaccines trials. Expert Rev Vaccines. 2020; 19(6): 549-62.

[184]

Ebbensgaard A, Mordhorst H, Aarestrup FM, Hansen EB. The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of Escherichia coli to Antimicrobial Peptides. Front Microbiol. 2018; 9: 2153.

[185]

Zhang Y, Fang Z, Li R, Huang X, Liu Q. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers (Basel). 2019; 11(9): 1314.

[186]

Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015; 13(10): 605-19.

[187]

Wang S, Guo J, Bai Y, Sun C, Wu Y, Liu Z, et al. Bacterial outer membrane vesicles as a candidate tumor vaccine platform. Front Immunol. 2022; 13: 987419.

[188]

Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci. 2018; 6(5): 958-73.

[189]

Salem-Bekhit MM, Youssof AME, Alanazi FK, Aleanizy FS, Abdulaziz A, Taha EI, et al. Bacteria from Infectious Particles to Cell Based Anticancer Targeted Drug Delivery Systems. Pharmaceutics. 2021; 13(12): 1984.

[190]

Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022; 3(8): 911-26.

[191]

Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018; 18(3): 168-82.

[192]

Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med. 2023; 55(10): 2085-96.

[193]

Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, et al. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines (Basel). 2023; 11(3): 661.

[194]

Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 418.

[195]

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021; 15(11): 16982-7015.

[196]

Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials (Basel). 2022; 15(9): 3251.

[197]

Lozano D, Larraga V, Vallet-Regí M, Manzano M. An Overview of the Use of Nanoparticles in Vaccine Development. Nanomaterials (Basel). 2023; 13(12): 1828.

[198]

Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009; 6(11): 1175-94.

[199]

Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, et al. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel). 2022; 10(11): 1946.

[200]

Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. Materials (Basel). 2021; 14(2): 248.

[201]

Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech. 2014; 15(5): 1345-54.

[202]

Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy. Adv Sci. 2022; 9(16): 2200027.

[203]

Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019; 20: 100397.

[204]

Wieszczycka K, Staszak K, Woźniak-Budych MJ, Litowczenko J, Maciejewska BM, Jurga S. Surface functionalization - The way for advanced applications of smart materials. Coord Chem Rev. 2021; 436: 213846.

[205]

Wichaita W, Kim Y-G, Tangboriboonrat P, Thérien-Aubin H. Polymer-functionalized polymer nanoparticles and their behaviour in suspensions. Polym Chem. 2020; 11(12): 2119-28.

[206]

Yu Z, Meng X, Zhang S, Chen Y, Zhang Z, Zhang Y. Recent Progress in Transdermal Nanocarriers and Their Surface Modifications. Molecules. 2021; 26(11): 3093.

[207]

Padín-González E, Lancaster P, Bottini M, Gasco P, Tran L, Fadeel B, et al. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front Bioeng Biotechnol. 2022; 10: 882363.

[208]

Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021; 13(24): 10748-64.

[209]

Grabarnick Portnoy E, Andriyanov AV, Han H, Eyal S, Barenholz Y. PEGylated Liposomes Remotely Loaded with the Combination of Doxorubicin, Quinine, and Indocyanine Green Enable Successful Treatment of Multidrug-Resistant Tumors. Pharmaceutics. 2021; 13(12): 2181.

[210]

Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, et al. PEGylated liposomes enhance the effect of cytotoxic drug: A review. Heliyon. 2023; 9(3): e13823.

[211]

Ochyl LJ, Bazzill JD, Park C, Xu Y, Kuai R, Moon JJ. PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials. 2018; 182: 157-66.

[212]

Ortega-Muñoz M, Plesselova S, Delgado AV, Santoyo-Gonzalez F, Salto-Gonzalez R, Giron-Gonzalez MD, et al. Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties. Polymers (Basel). 2021; 13(10): 1599.

[213]

Lee A, Dadhwal S, Gamble A, Hook S. Liposomes with cyclodextrin channels and polyethyleneimine (PEI) improves cytoplasmic vaccine delivery and induces anti-cancer immune activity in mice. J Liposome Res. 2022; 32(1): 22-31.

[214]

Beg S, Almalki WH, Khatoon F, Alharbi KS, Alghamdi S, Akhter MH, et al. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov Today. 2021; 26(8): 1891-903.

[215]

Jin S, Zhang J, Nahar UJ, Huang W, Alharbi NA, Shalash AO, et al. Activity Relationship of Poly(ethylenimine)-Based Liposomes as Group A Streptococcus Vaccine Delivery Systems. ACS Infect Dis. 2023; 9(8): 1570-81.

[216]

Shaban SM, Kang J, Kim D-H. Surfactants: Recent advances and their applications. Compos Commun. 2020; 22: 100537.

[217]

Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine. 2021; 16: 3937-99.

[218]

A Razak SA, Mohd Gazzali A, Fisol FA, M Abdulbaqi I, Parumasivam T, Mohtar N, et al. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers [Internet]. 2021; 13(3): 400.

[219]

Marques AC, Costa PC, Velho S, Amaral MH. Injectable Poloxamer Hydrogels for Local Cancer Therapy. Gels. 2023; 9(7): 593.

[220]

Lamrayah M, Phelip C, Rovera R, Coiffier C, Lazhar N, Bartolomei F, et al. Poloxamers Have Vaccine-Adjuvant Properties by Increasing Dissemination of Particulate Antigen at Distant Lymph Nodes. Molecules. 2023; 28(12): 4778.

[221]

Uddin S, Islam MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Modification with Conventional Surfactants to Improve a Lipid-Based Ionic-Liquid-Associated Transcutaneous Anticancer Vaccine. Molecules. 2023; 28(7): 2969.

[222]

Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013; 19(35): 6315-29.

[223]

Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev. 2019; 119(8): 4819-80.

[224]

Saha K, Bajaj A, Duncan B, Rotello VM. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Bio-macromolecules. Small. 2011; 7(14): 1903-18.

[225]

Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano. 2022; 16(5): 7168-96.

[226]

Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, et al. Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev. 2019; 15(143): 22-36.

[227]

Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. npj Vaccines. 2021; 6(1): 70.

[228]

Rodrigues MQ, Alves PM, Roldao A. Functionalizing Ferritin Nanoparticles for Vaccine Development. Pharmaceutics. 2021; 13(10): 1621.

[229]

Affatigato L, Licciardi M, Bonamore A, Martorana A, Incocciati A, Boffi A, et al. Ferritin-Coated SPIONs as New Cancer Cell Targeted Magnetic Nanocarrier. Molecules. 2023; 28(3): 1163.

[230]

Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020; 3(4): 930-46.

[231]

Parodi A, Miao J, Soond SM, Rudzińska M, Zamyatnin AA. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules. 2019; 9(6): 218.

[232]

Chubarov AS. Serum Albumin for Magnetic Nanoparticles Coating. Magnetochemistry. 2022; 8(2): 13.

[233]

Feng G, Arima Y, Midorikawa K, Kobayashi H, Oikawa S, Zhao W, et al. Knockdown of TFRC suppressed the progression of nasopharyngeal carcinoma by downregulating the PI3K/Akt/mTOR pathway. Cancer Cell Int. 2023; 23(1): 185.

[234]

Chang J, Jallouli Y, Kroubi M, Yuan X-b, Feng W, Kang C-s, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm. 2009; 379(2): 285-92.

[235]

Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm. 2009; 71(2): 251-6.

[236]

Zong J, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci. 2017; 5(5): 872-86.

[237]

Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol. 2022; 13: 1072685.

[238]

Grau M, Walker PR, Derouazi M. Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci. 2018; 75(16): 2887-96.

[239]

Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012; 18(7): 385-93.

[240]

Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Technol. 2023; 84: 104562.

[241]

A Holgado M, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, L. AriasJ. Drug Targeting to Cancer by Nanoparticles Surface Functionalized with Special Biomolecules. Curr Med Chem. 2012; 19(19): 3188-95.

[242]

Priya S, Desai VM, Singhvi G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. ACS Omega. 2023; 8(1): 74-86.

[243]

Wu J-L, He X-Y, Liu B-Y, Gong M-Q, Zhuo R-X, Cheng S-X. Fusion peptide functionalized hybrid nanoparticles for synergistic drug delivery to reverse cancer drug resistance. J Mater Chem B. 2017; 5(24): 4697-704.

[244]

Huang X, Chen L, Zhang Y, Zhou S, Cai H-H, Li T, et al. GE11 Peptide Conjugated Liposomes for EGFR-Targeted and Chemophotothermal Combined Anticancer Therapy. Bioinorg Chem Appl. 2021; 2021: 5534870.

[245]

Genta I, Chiesa E, Colzani B, Modena T, Conti B, Dorati R. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics. 2017; 10(1): 2.

[246]

Hu D, Mezghrani O, Zhang L, Chen Y, Ke X, Ci T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int J Nanomedicine. 2016; 11: 5125-47.

[247]

Gu W, Liu T, Fan D, Zhang J, Xia Y, Meng F, et al. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. J Control Release. 2021; 329: 706-16.

[248]

Finlayson M. Modulation of CD44 Activity by A6-Peptide. Front Immunol. 2015; 6: 135.

[249]

Rostami N, Ghebleh A, Noei H, Rizi ZS, Moeinzadeh A, Nikzad A, et al. Peptide-functionalized polymeric nanoparticles for delivery of curcumin to cancer cells. J Drug Deliv Technol. 2024; 102: 106337.

[250]

Gomari MM, Arab SS, Balalaie S, Ramezanpour S, Hosseini A, Dokholyan NV, et al. Rational peptide design for targeting cancer cell invasion. Proteins. 2024; 92(1): 76-95.

[251]

Gu W, An J, Meng H, Yu N, Zhong Y, Meng F, et al. CD44-Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. Adv Mater. 2019; 31(46): 1904742.

[252]

Zhang C, Wang X, Cheng R, Zhong Z. A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules. 2020; 21(6): 2049-59.

[253]

Termeer C, Averbeck M, Hara H, Eibel H, Herrlich P, Sleeman J, et al. Targeting dendritic cells with CD44 monoclonal antibodies selectively inhibits the proliferation of naive CD4+ T-helper cells by induction of FAS-independent T-cell apoptosis. Immunology. 2003; 109(1): 32-40.

[254]

Minutti CM, Drube S, Blair N, Schwartz C, McCrae JC, McKenzie AN, et al. Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion. Immunity. 2017; 47(4): 710-22.e6.

[255]

Zamani P, Navashenaq JG, Nikpoor AR, Hatamipour M, Oskuee RK, Badiee A, et al. MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J Control Release. 2019; 303: 223-36.

[256]

Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci. 2020; 21(17): 6018.

[257]

Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release. 2020; 320: 180-200.

[258]

Zumaya AL, Rimpelová S, Štějdířová M, Ulbrich P, Vilčáková J, Hassouna F. Antibody Conjugated PLGA Nanocarriers and Superparmagnetic Nanoparticles for Targeted Delivery of Oxaliplatin to Cells from Colorectal Carcinoma. Int J Mol Sci [Internet]. 2022; 23(3): 1200.

[259]

Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer. 2023; 22(1): 38.

[260]

Do ASS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. Mol Ther Oncolytics. 2020; 18: 295-303.

[261]

Jiang M, Zhao L, Cui X, Wu X, Zhang Y, Guan X, et al. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J Adv Res. 2022; 35: 49-60.

[262]

Lee CK, Atibalentja DF, Yao LE, Park J, Kuruvilla S, Felsher DW. Anti-PD-L1 F(ab) Conjugated PEG-PLGA Nanoparticle Enhances Immune Checkpoint Therapy. Nanotheranostics. 2022; 6(3): 243-55.

[263]

Souto EB, Doktorovova S, Campos JR, Martins-Lopes P, Silva AM. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci. 2019; 128: 27-35.

[264]

Guo S, Zhang Y, Wu Z, Zhang L, He D, Li X, et al. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed Pharmacother. 2019; 118: 109225.

[265]

Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H. A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel). 2022; 14(24): 5432.

[266]

Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym. 2019; 221: 94-112.

[267]

Doh KO, Yeo Y. Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 2012; 3(12): 1447-56.

[268]

Chircov C, Ștefan R-E, Dolete G, Andrei A, Holban AM, Oprea O-C, et al. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics. 2022; 14(5): 1057.

[269]

Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm. 2023; 643: 123276.

[270]

Peters K, Peters M. The Role of Lectin Receptors and Their Ligands in Controlling Allergic Inflammation. Front Immunol. 2021; 12: 635411.

[271]

Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol. 2023; 14: 1126043.

[272]

Kim K, Choi H, Choi ES, Park M-H, Ryu J-H. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics. 2019; 11(7): 301.

[273]

Nokhodi F, Nekoei M, Goodarzi MT. Hyaluronic acid-coated chitosan nanoparticles as targeted-carrier of tamoxifen against MCF7 and TMX-resistant MCF7 cells. J Mater Sci Mater Med. 2022; 33(2): 24.

[274]

Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release. 2022; 351: 923-40.

[275]

Esim O, Oztuna A, Sarper M, Hascicek C. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Drug Deliv Technol. 2022; 77: 103906.

[276]

Baati T, Chaabani I, Salek A, Njim L, Selmi M, Al-Kattan A, et al. Chitosan-coated ultrapure silicon nanoparticles produced by laser ablation: biomedical potential in nano-oncology as a tumor-targeting nanosystem. Nanoscale Adv. 2023; 5(11): 3044-52.

[277]

Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010; 9(7): 537-50.

[278]

Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol. 2023; 11: 1092901.

[279]

Fu Z, Xiang J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int J Mol Sci. 2020; 21(23): 9123.

[280]

Kang H, O'Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun. 2010; 46(2): 249-51.

[281]

Sicco E, Baez J, Ibarra M, Fernández M, Cabral P, Moreno M, et al. Sgc8-c Aptamer as a Potential Theranostic Agent for Hemato-Oncological Malignancies. Cancer Biother Radiopharm. 2020; 35(4): 262-70.

[282]

Zhu L, Zhao J, Guo Z, Liu Y, Chen H, Chen Z, et al. Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. Biosensors [Internet]. 2021; 11(9): 344.

[283]

Zheng L, Wu H, Wen N, Zhang Y, Wang Z, Peng X, et al. Aptamer-Functionalized Nanovaccines: Targeting In Vivo DC Subsets for Enhanced Antitumor Immunity. ACS Appl Mater Interfaces. 2023; 15(15): 18590-7.

[284]

Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Converg. 2020; 7(1): 14.

[285]

Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, et al. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. Nanomaterials (Basel). 2021; 11(1): 16.

[286]

Cluff CW. Monophosphoryl Lipid A (MPL) as an Adjuvant for Anti-Cancer Vaccines: Clinical Results. In: Jeannin J-F, editor. Lipid A in Cancer Therapy. New York, NY: Springer New York; 2010. p. 111-23.

[287]

Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015; 39(8): 881-90.

[288]

Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm. 2021; 18(8): 2867-88.

[289]

Mai T, Hilt JZ. Functionalization of iron oxide nanoparticles with small molecules and the impact on reactive oxygen species generation for potential cancer therapy. Colloids Surf A Physicochem Eng Asp. 2019; 576: 9-14.

[290]

Saepudin E, Fadhilah HR, Khalil M. The influence of carboxylate moieties for efficient loading and pH-controlled release of doxorubicin in Fe3O4 magnetic nanoparticles. Colloids Surf A: Physicochem Eng Asp. 2020; 602: 125137.

[291]

Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol. 2016; 142(11): 2217-29.

[292]

Tang B, Peng Y, Yue Q, Pu Y, Li R, Zhao Y, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020; 193: 112204.

[293]

Cheng M, Zhu W, Li Q, Dai D, Hou Y. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget. 2017; 8(35): 59068-85.

[294]

Raposo CD, Conceição CA, Barros MT. Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers. Molecules. 2020; 25(7): 1744.

[295]

Sun B, Zhao X, Wu Y, Cao P, Movahedi F, Liu J, et al. Mannose-Functionalized Biodegradable Nanoparticles Efficiently Deliver DNA Vaccine and Promote Anti-tumor Immunity. ACS Appl Mater Interfaces. 2021; 13(12): 14015-27.

[296]

Fallarini S, Paoletti T, Battaglini CO, Ronchi P, Lay L, Bonomi R, et al. Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale. 2013; 5(1): 390-400.

[297]

Mougel A, Terme M, Tanchot C. Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front Immunol. 2019; 10: 467.

[298]

DeMaria PJ, Bilusic M. Cancer vaccines. Hematol Oncol Clin. 2019; 33(2): 199-214.

[299]

Corti C, Giachetti PP, Eggermont AM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer. 2022; 160: 150-74.

[300]

Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol. 2020; 88: 106944.

[301]

Takayama Y, Kusamori K, Nishikawa M. Click chemistry as a tool for cell engineering and drug delivery. Molecules. 2019; 24(1): 172.

[302]

Patel KG, Swartz JR. Surface functionalization of virus-like particles by direct conjugation using azide− alkyne click chemistry. Bioconjug Chem. 2011; 22(3): 376-87.

[303]

Chassaing S, Bénéteau V, Pale P. When CuAAC'click chemistry'goes heterogeneous. Catal Sci Technol. 2016; 6(4): 923-57.

[304]

Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. The staudinger ligation. Chem Rev. 2020; 120(10): 4301-54.

[305]

Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed Engl. 2010; 49(9): 1540-73.

[306]

Knall A-C, Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev. 2013; 42(12): 5131-42.

[307]

Köhn M, Breinbauer R. The Staudinger ligation—a gift to chemical biology. Angew Chem Int. 2004; 43(24): 3106-16.

[308]

Kolb HC, Finn M, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int. 2001; 40(11): 2004-21.

[309]

Li X, Xiong Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS omega. 2022; 7(42): 36918-28.

[310]

Becer CR, Hoogenboom R, Schubert US. Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed Engl. 2009; 48(27): 4900-8.

[311]

Jarząb A, Skowicki M, Witkowska D. Subunit vaccines-antigens, carriers, conjugation methods and the role of adjuvants. Postepy Hig Med Dosw. 2013; 67: 1128-43.

[312]

Mo M, Li X, Li C, Wang K, Li S, Guo Y, et al. Enhancement of Immune Response of Bioconjugate Nanovaccine by Loading of CpG through Click Chemistry. J Pers Med. 2023; 13(3): 507.

[313]

Spanedda MV, De Giorgi M, Heurtault B, Kichler A, Bourel-Bonnet L, Frisch B. Click Chemistry for Liposome Surface Modification. Methods Mol Biol. Springer; 2023; 2622: 173-89.

[314]

Kapoor N, Uchiyama S, Pill L, Bautista L, Sedra A, Yin L, et al. Non-Native Amino Acid Click Chemistry-Based Technology for Site-Specific Polysaccharide Conjugation to a Bacterial Protein Serving as Both Carrier and Vaccine Antigen. ACS Omega. 2022; 7(28): 24111-20.

[315]

Kharwade R, More S, Warokar A, Agrawal P, Mahajan N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arab J Chem. 2020; 13(7): 6009-39.

[316]

Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015; 20(5): 9263-94.

[317]

Huysamen AM, Fadeyi OE, Mayuni G, Dogbey DM, Mungra N, Biteghe FA, et al. Click Chemistry-Generated Auristatin F-Linker-Benzylguanine for a SNAP-Tag-Based Recombinant Antibody-Drug Conjugate Demonstrating Selective Cytotoxicity toward EGFR-Overexpressing Tumor Cells. ACS omega. 2023; 8(4): 4026-37.

[318]

Ahmad Fuaad AA, Azmi F, Skwarczynski M, Toth I. Peptide conjugation via CuAAC ‘click’chemistry. Molecules. 2013; 18(11): 13148-74.

[319]

He X-P, Zeng Y-L, Zang Y, Li J, Field RA, Chen G-R. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res. 2016; 429: 1-22.

[320]

Al-hujaj HH, Almashal FA, Kadum AT, Mohammed MK, Hussein KA, Jassem AM. Click Chemistry-Based Synthesis of Novel 1, 2, 3-Triazole Derivatives and Cytotoxic Activity on Breast and Prostate Cancer Cell Lines. Trop J Nat Prod Res. 2023; 7(7): 26538.

[321]

Mei L, Liu Y, Rao J, Tang X, Li M, Zhang Z, et al. Enhanced tumor retention effect by click chemistry for improved cancer immunochemotherapy. ACS Appl Mater Interfaces. 2018; 10(21): 17582-93.

[322]

Luo X, Lian Q, Li W, Chen L, Zhang R, Yang D, et al. Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem Sci. 2021; 12(48): 15998-6013.

[323]

Carvalho SB, Freire JoM, Moleirinho MG, Monteiro F, Gaspar D, Castanho MA, et al. Bioorthogonal strategy for bioprocessing of specific-site-functionalized enveloped influenza-virus-like particles. Bioconjug Chem. 2016; 27(10): 2386-99.

[324]

Derks YH, Rijpkema M, Amatdjais-Groenen HI, Loeff CC, de Roode KE, Kip A, et al. Strain-promoted azide-alkyne cycloaddition-based PSMA-targeting ligands for multimodal intraoperative tumor detection of prostate cancer. Bioconjug Chem. 2021; 33(1): 194-205.

[325]

Stefanetti G, Allan M, Usera A, Micoli F. Click chemistry compared to thiol chemistry for the synthesis of site-selective glycoconjugate vaccines using CRM 197 as carrier protein. Glycoconj J. 2020; 37(5): 611-22.

[326]

Wang H, Bo Y, Liu Y, Xu M, Cai K, Wang R, et al. In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction. Biomaterials. 2019; 218: 119305.

[327]

Yoon HY, Shin ML, Shim MK, Lee S, Na JH, Koo H, et al. Artificial chemical reporter targeting strategy using bioorthogonal click reaction for improving active-targeting efficiency of tumor. Mol Pharm. 2017; 14(5): 1558-70.

[328]

Liu C-G, Wang Y, Liu P, Yao Q-L, Zhou Y-Y, Li C-F, et al. Aptamer-T cell targeted therapy for tumor treatment using sugar metabolism and click chemistry. ACS Chem Biol. 2020; 15(6): 1554-65.

[329]

Chong S-F, Sexton A, De Rose R, Kent SJ, Zelikin AN, Caruso F. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials. 2009; 30(28): 5178-86.

[330]

Lanz-Landázuri A, de Ilarduya AM, García-Alvarez M, Muñoz-Guerra S. Modification of microbial polymers by thiol-ene click reaction: Nanoparticle formation and drug encapsulation. React Funct Polym. 2016; 106: 143-52.

[331]

Litau S, Seibold U, Wängler B, Schirrmacher R, Wängler C. IEDDA conjugation reaction in radiometal labeling of peptides with 68Ga and 64Cu: unexpected findings. ACS omega. 2018; 3(10): 14039-53.

[332]

Zhao Y, Yao Q, Chen J, Zhang R, Song J, Gao Y. Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation. Biomater Sci. 2022; 10(19): 5662-8.

[333]

Brand C, Iacono P, Pérez-Medina C, Mulder WJ, Kircher MF, Reiner T. Specific Binding of Liposomal Nanoparticles through Inverse Electron-Demand Diels-Alder Click Chemistry. ChemistryOpen. 2017; 6(5): 615-9.

[334]

Grandjean C, Boutonnier A, Guerreiro C, Fournier J-M, Mulard LA. On the preparation of carbohydrate− protein conjugates using the traceless Staudinger ligation. J Org Chem. 2005; 70(18): 7123-32.

[335]

Joshi BP, Hardie J, Mingroni MA, Farkas ME. Surface-modified macrophages facilitate tracking of breast cancer-immune interactions. ACS Chem Biol. 2018; 13(8): 2339-46.

[336]

Wang C, Yang J, Lu Y. Click chemistry as a connection tool: Grand opportunities and challenges. Chinese J Catal. 2023; 49: 8-15.

[337]

Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click chemistry hydrogels for extrusion bioprinting: progress, challenges, and opportunities. Biomacromolecules. 2022; 23(3): 619-40.

[338]

Bhatta R, Han J, Liu Y, Bo Y, Lee D, Zhou J, et al. Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines. Nat Commun. 2023; 14(1): 8047.

[339]

Yoon HY, Koo H, Kim K, Kwon IC. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials. 2017; 132: 28-36.

[340]

Jones LH. Recent advances in the molecular design of synthetic vaccines. Nat Chem. 2015; 7(12): 952-60.

[341]

Yakubu S, Emmanuel EE. Modern Advances in Click Reactions and applications. J Chem React Synth. 2023; 13(2): 123-45.

[342]

Jafari D, Malih S, Eslami SS, Jafari R, Darzi L, Tarighi P, et al. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie. 2019; 165: 76-89.

[343]

Zhang H, Wang S, Sun M, Cui Y, Xing J, Teng L, et al. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front Immunol. 2022; 13: 1093607.

[344]

Chen R, Xu X, Qian Z, Zhang C, Niu Y, Wang Z, et al. The biological functions and clinical applications of exosomes in lung cancer. Cell Mol Life Sci. 2019; 76(23): 4613-33.

[345]

Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, et al. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res. 2022; 10(1): 30.

[346]

Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017; 546(7659): 498-503.

[347]

Williams C, Pazos R, Royo F, González E, Roura-Ferrer M, Martinez A, et al. Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci Rep. 2019; 9(1): 11920.

[348]

Xiao Y, Zhong J, Zhong B, Huang J, Jiang L, Jiang Y, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020; 476: 13-22.

[349]

Alagundagi DB, Ghate SD, Rajendra VKJ, Gollapalli P, Shetty VV, D'Souza C, et al. Exploring breast cancer exosomes for novel biomarkers of potential diagnostic and prognostic importance. 3 Biotech. 2022; 13(1): 7.

[350]

Tiyuri A, Baghermanesh SS, Davatgaran-Taghipour Y, Eslami SS, Shaygan N, Parsaie H, et al. Diagnostic accuracy of serum derived exosomes for hepatocellular carcinoma: a systematic review and meta-analysis. Expert Rev Mol Diagn. 23(11): 1-13.

[351]

Grimolizzi F, Monaco F, Leoni F, Bracci M, Staffolani S, Bersaglieri C, et al. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep. 2017; 7(1): 15277.

[352]

Jo SD, Nam G-H, Kwak G, Yang Y, Kwon IC. Harnessing designed nanoparticles: Current strategies and future perspectives in cancer immunotherapy. Nano Today. 2017; 17: 23-37.

[353]

Zhang Q, Wang M, Han C, Wen Z, Meng X, Qi D, et al. Intraduodenal Delivery of Exosome-Loaded SARS-CoV-2 RBD mRNA Induces a Neutralizing Antibody Response in Mice. Vaccines (Basel). 2023; 11(3): 673.

[354]

Cacciottolo M, Nice Justin B, Li Y, LeClaire Michael J, Twaddle R, Mora Ciana L, et al. Exosome-Based Multivalent Vaccine: Achieving Potent Immunization, Broadened Reactivity, and Strong T-Cell Responses with Nanograms of Proteins. Microbiol Spectr. 2023; 11(3): e00503-23.

[355]

Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018; 9(1): 2359.

[356]

Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017; 266: 8-16.

[357]

Ruan H, Li Y, Wang C, Jiang Y, Han Y, Li Y, et al. Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm Sin B. 2023; 13(5): 2202-18.

[358]

Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002; 3(12): 1156-62.

[359]

Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res. 2010; 70(4): 1281-5.

[360]

Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017; 67(4): 739-48.

[361]

Shoae-Hassani A, Hamidieh AA, Behfar M, Mohseni R, Mortazavi-Tabatabaei SA, Asgharzadeh S. NK Cell-derived Exosomes From NK Cells Previously Exposed to Neuroblastoma Cells Augment the Antitumor Activity of Cytokine-activated NK Cells. J Immunother. 2017; 40(7): 265-76.

[362]

Di Pace AL, Tumino N, Besi F, Alicata C, Conti LA, Munari E, et al. Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor In Exosome-Mediated Cytotoxicity Against Tumor. Cancers (Basel). 2020; 12(3): 661.

[363]

Cheng L, Wang Y, Huang L. Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node. Mol Ther. 2017; 25(7): 1665-75.

[364]

Rezaie J, Ahmadi M, Ravanbakhsh R, Mojarad B, Mahbubfam S, Shaban SA, et al. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci. 2022; 289: 120216.

[365]

Hung YY, Chou CK, Yang YC, Fu HC, Loh EW, Kang HY. Exosomal let-7e, miR-21-5p, miR-145, miR-146a and miR-155 in Predicting Antidepressants Response in Patients with Major Depressive Disorder. Biomedicines. 2021; 9(10): 1428.

[366]

Duan S, Yu S, Yuan T, Yao S, Zhang L. Exogenous Let-7a-5p Induces A549 Lung Cancer Cell Death Through BCL2L1-Mediated PI3Kγ Signaling Pathway. Front Oncol. 2019; 9: 808.

[367]

Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K, et al. M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 2022; 13(2): 183.

[368]

Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007; 120(6): 1418-24.

[369]

Lu J, Wu J, Tian J, Wang S. Role of T cell-derived exosomes in immunoregulation. Immunol Res. 2018; 66(3): 313-22.

[370]

Okoye Isobel S, Coomes Stephanie M, Pelly Victoria S, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells. Immunity. 2014; 41(1): 89-103.

[371]

Zhang Y, Pfannenstiel LW, Bolesta E, Montes CL, Zhang X, Chapoval AI, et al. Interleukin-7 inhibits tumor-induced CD27-CD28- suppressor T cells: implications for cancer immunotherapy. Clin Cancer Res. 2011; 17(15): 4975-86.

[372]

Choi D, Spinelli C, Montermini L, Rak J. Oncogenic Regulation of Extracellular Vesicle Proteome and Heterogeneity. Proteomics. 2019; 19(1-2): e1800169.

[373]

Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells [Internet]. 2021; 10(1): 109.

[374]

de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front Genet. 2018; 9: 92.

[375]

Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol. 2018; 36: 435-59.

[376]

Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001; 7(3): 297-303.

[377]

Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. OncoImmunology. 2015; 4(9): e1027472.

[378]

Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med. 1998; 4(5): 594-600.

[379]

Ren G, Wang Y, Yuan S, Wang B. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response. Oncol Lett. 2018; 15(5): 6636-40.

[380]

Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, et al. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers. 2022; 14(9): 2102.

[381]

Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020; 124: 109821.

[382]

Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, et al. Cancer immunotherapy: Challenges and limitations. Pathol Res Pract. 2022; 229: 153723.

[383]

Gupta S, Shukla S. Limitations of Immunotherapy in Cancer. Cureus. 2022; 14(10): e30856.

[384]

Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Front Immunol. 2023; 14: 1246682.

[385]

Sun Z, Jiang J, Chen X. Evaluation of therapeutic equivalence for the follow-on version of intravenously administered non-biological complex drugs. Clin Pharmacokinet. 2020; 59(8): 995-1004.

[386]

Sultan H, Kumai T, Nagato T, Wu J, Salazar AM, Celis E. The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol Immunother. 2019; 68(3): 455-66.

[387]

Duinkerken S, Horrevorts SK, Kalay H, Ambrosini M, Rutte L, de Gruijl TD, et al. Glyco-dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics. 2019; 9(20): 5797.

[388]

Akalkotkar A, Chablani L, Tawde SA, D'Souza C, D'Souza MJ. Development of a microparticulate prostate cancer vaccine and evaluating the effect of route of administration on its efficacy via the skin. J Microencapsul. 2015; 32(3): 281-9.

[389]

Jeanbart L, Ballester M, De Titta A, Corthésy P, Romero P, Hubbell JA, et al. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res. 2014; 2(5): 436-47.

[390]

Lesterhuis WJ, de Vries IJM, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res. 2011; 17(17): 5725-35.

[391]

Ni L. Advances in mRNA-Based Cancer Vaccines. Vaccines. 2023; 11(10): 1599.

[392]

Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer. 2023; 22(1): 106.

[393]

Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 9.

[394]

Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24(3): 213-27.

[395]

Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol. 2022; 13: 1029069.

[396]

Lin Y, Chen X, Wang K, Liang L, Zhang H. An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer. Vaccines. 2024; 12(7): 727.

[397]

Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, et al. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med. 2023; 13(8): e1384.

[398]

Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, et al. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res. 2022; 45(12): 865-93.

[399]

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021; 6(12): 1078-94.

[400]

Estapé Senti M, García del Valle L, Schiffelers RM. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev. 2024; 206: 115190.

[401]

Qu Y, Xu J, Zhang T, Chen Q, Sun T, Jiang C. Advanced nano-based strategies for mRNA tumor vaccine. Acta Pharm Sin B. 2024; 14(1): 170-89.

[402]

Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, et al. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther. 2022; 7(1): 386.

[403]

Hossain F, Kandalai S, Zhou X, Zhang N, Zheng Q. Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. Molecules. 2022; 27(20): 6933.

[404]

Lyu C, Sun H, Sun Z, Liu Y, Wang Q. Roles of exosomes in immunotherapy for solid cancers. Cell Death Dis. 2024; 15(2): 106.

RIGHTS & PERMISSIONS

2025 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/