Altered glycosylation in cancer: molecular functions and therapeutic potential

Xuemeng Xu , Qiu Peng , Xianjie Jiang , Shiming Tan , Wenjuan Yang , Yaqian Han , Linda Oyang , Jinguan Lin , Mengzhou Shen , Jiewen Wang , Haofan Li , Longzheng Xia , Mingjing Peng , Nayiyuan Wu , Yanyan Tang , Hui Wang , Qianjin Liao , Yujuan Zhou

Cancer Communications ›› 2024, Vol. 44 ›› Issue (11) : 1316 -1336.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (11) : 1316 -1336. DOI: 10.1002/cac2.12610
REVIEW

Altered glycosylation in cancer: molecular functions and therapeutic potential

Author information +
History +
PDF

Abstract

Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate—glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.

Keywords

Glycosylation / immunity / cellular senescence / tumor biomarkers / cancer therapy

Cite this article

Download citation ▾
Xuemeng Xu, Qiu Peng, Xianjie Jiang, Shiming Tan, Wenjuan Yang, Yaqian Han, Linda Oyang, Jinguan Lin, Mengzhou Shen, Jiewen Wang, Haofan Li, Longzheng Xia, Mingjing Peng, Nayiyuan Wu, Yanyan Tang, Hui Wang, Qianjin Liao, Yujuan Zhou. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Communications, 2024, 44(11): 1316-1336 DOI:10.1002/cac2.12610

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, et al. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin. 2021; 42(8): 1201–1211.

[2]

Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020; 5(1): 90.

[3]

Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev. 2021; 68: 101336.

[4]

Millan-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications -cause and consequence of genome function. Nat Rev Genet. 2022; 23(9): 563–580.

[5]

Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. Med Comm (2020). 2023; 4(3): e261.

[6]

Eichler J. Protein glycosylation. Curr Biol. 2019; 29(7): R229–R231.

[7]

Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020; 21(12): 729–749.

[8]

Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv. 2024; 70: 108283.

[9]

Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol. 2024; 153(1): 55–66.

[10]

Hoek M, Demmers LC, Wu W, Heck AJR. Allotype-Specific Glycosylation and Cellular Localization of Human Leukocyte Antigen Class I Proteins. J Proteome Res. 2021; 20(9): 4518–4528.

[11]

Kissel T, Toes REM, Huizinga TWJ, Wuhrer M. Glycobiology of rheumatic diseases. Nat Rev Rheumatol. 2023; 19(1): 28–43.

[12]

Wojcik I, Wuhrer M, Heeringa P, Stegeman CA, Rutgers A, Falck D. Specific IgG glycosylation differences precede relapse in PR3-ANCA associated vasculitis patients with and without ANCA rise. Front Immunol. 2023; 14: 1214945.

[13]

Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci. 2024; 336: 122303.

[14]

Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol. 2023; 14: 1168023.

[15]

Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015; 10: 473–510.

[16]

Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, et al. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv. 2023; 66: 108149.

[17]

Grzesik K, Janik M, Hoja-Lukowicz D. The hidden potential of glycomarkers: Glycosylation studies in the service of cancer diagnosis and treatment. Biochim Biophys Acta Rev Cancer. 2023; 1878(3): 188889.

[18]

Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015; 15(9): 540–555.

[19]

Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell. 2019; 36(1): 6–16.

[20]

Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights into the function of CD24: A driving force in cancer. Int J Cancer. 2021; 148(3): 546–559.

[21]

Silsirivanit A. Glycosylation markers in cancer. Adv Clin Chem. 2019; 89: 189–213.

[22]

RodrIguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018; 18(3): 204–211.

[23]

Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Cancer Biol. 2017; 44: 141–152.

[24]

Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023; 55(7): 1357–1370.

[25]

Lopez-Otin C, Pietrocola F, Roiz-Valle D. Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023; 35(1): 12–35.

[26]

Kang N, Son S, Min S, Hong H, Kim C, An J, et al. Stimuli-responsive ferroptosis for cancer therapy. Chem Soc Rev. 2023; 52(12): 3955–3972.

[27]

Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005; 5(7): 526–542.

[28]

Zhou JY, Cobb BA. Glycans in Immunologic Health and Disease. Annu Rev Immunol. 2021; 39: 511–536.

[29]

Song Y, Zhang F, Linhardt RJ. Glycosaminoglycans. Adv Exp Med Biol. 2021; 1325: 103–116.

[30]

Varki A. Biological roles of glycans. Glycobiology. 2017; 27(1): 3–49.

[31]

Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000; 69: 69–93.

[32]

Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, et al. Potential roles of N-glycosylation in cell adhesion. Glycoconj J. 2012; 29(8-9): 599–607.

[33]

Gedaj A, Gregorczyk P, Zukowska D, Chorazewska A, Ciura K, Kalka M, et al. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev. 2024; 77: 39–55.

[34]

Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, et al. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol Cell. 2019; 75(2): 394–407 e5.

[35]

Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev. 2021; 121(3): 1513–1581.

[36]

Yang W, Tian E, Chernish A, McCluggage P, Dalal K, Lara A, et al. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder. Proc Natl Acad Sci U S A. 2023; 120(43): e2303703120.

[37]

Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012; 13(7): 448–462.

[38]

Suzuki T. Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med. 2016; 51: 89–103.

[39]

Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol. 2016; 428(16): 3305–3324.

[40]

Cherepanova N, Shrimal S, Gilmore R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol. 2016; 41: 57–65.

[41]

Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol. 2015; 41: 79–89.

[42]

Saha A, Bello D, Fernandez-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev. 2021; 50(18): 10451–10485.

[43]

Balana AT, Levine PM, Craven TW, Mukherjee S, Pedowitz NJ, Moon SP, et al. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nat Chem. 2021; 13(5): 441–450.

[44]

Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev. 2021; 101(2): 427–493.

[45]

Gill DJ, Clausen H, Bard F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol. 2011; 21(3): 149–158.

[46]

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019; 15(6): 346–366.

[47]

Pathangey LB, Lakshminarayanan V, Suman VJ, Pockaj BA, Mukherjee P, Gendler SJ. Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes. Biomolecules. 2016; 6(3): 31.

[48]

Julenius K. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology. 2007; 17(8): 868–876.

[49]

Crine SL, Acharya KR. Molecular basis of C-mannosylation -a structural perspective. FEBS J. 2022; 289(24): 7670–7687.

[50]

Shcherbakova A, Preller M, Taft MH, Pujols J, Ventura S, Tiemann B, et al. C-mannosylation supports folding and enhances stability of thrombospondin repeats. Elife. 2019; 8: e52978.

[51]

Hu W, Zhang R, Chen W, Lin D, Wei K, Li J, et al. Glycosylation at Asn254 Is Required for the Activation of the PDGF-C Protein. Front Mol Biosci. 2021; 8: 665552.

[52]

Bandini G, Albuquerque-Wendt A. Hegermann J, Samuelson J, Routier FH. Protein O-and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology. 2019; 146(14): 1755–1766.

[53]

Lopaticki S, McConville R, John A, Geoghegan N, Mohamed SD, Verzier L, et al. Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun. 2022; 13(1): 4400.

[54]

Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res. 2016; 57(1): 6–24.

[55]

Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020; 10(3): 190290.

[56]

Zhang H, Su J, Li B, Gao Y, Liu M, He L, et al. Structure of human glycosylphosphatidylinositol transamidase. Nat Struct Mol Biol. 2022; 29(3): 203–209.

[57]

Guo Z. Glycosphingolipid and Glycosylphosphatidylinositol Affect Each Other in and on the Cell. Chembiochem. 2023; 24(13): e202200761.

[58]

Elishmereni M, Levi-Schaffer F. CD48: A co-stimulatory receptor of immunity. Int J Biochem Cell Biol. 2011; 43(1): 25–28.

[59]

White D, Cote-Martin A. Bleck M, Garaffa N, Shaaban A, Wu H, et al. Programmed Cell Death-1 (PD-1) anchoring to the GPI-linked co-receptor CD48 reveals a novel mechanism to modulate PD-1-dependent inhibition of human T cells. Mol Immunol. 2023; 156: 31–38.

[60]

Bravo-Perez C, Guarnera L, Williams ND, Visconte V. Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment. Medicina (Kaunas). 2023; 59(9): 1612.

[61]

Paprocka J, Hutny M, Hofman J, Tokarska A, Klaniewska M, Szczaluba K, et al. Spectrum of Neurological Symptoms in Glycosylphosphatidylinositol Biosynthesis Defects: Systematic Review. Front Neurol. 2021; 12: 758899.

[62]

Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021; 184(12): 3109–3124 e22.

[63]

Disney MD. A glimpse at the glycoRNA world. Cell. 2021; 184(12): 3080–3081.

[64]

Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, et al. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol.2024; 42(4): 608–616.

[65]

Zhang N, Tang W, Torres L, Wang X, Ajaj Y, Zhu L, et al. Cell surface RNAs control neutrophil recruitment. Cell. 2024; 187(4): 846–860.

[66]

Caval T, Alisson-Silva F. Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics. 2023; 13(8): 2605–2615.

[67]

Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med. 2022; 219(6): e20211505.

[68]

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31–46.

[69]

Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021; 1875(1): 188464.

[70]

Supruniuk K, Radziejewska I. MUC1 is an oncoprotein with a significant role in apoptosis (Review). Int J Oncol. 2021; 59(3): 68.

[71]

Mallard BW, Tiralongo J. Cancer stem cell marker glycosylation: Nature, function and significance. Glycoconj J. 2017; 34(4): 441–452.

[72]

Le Minh G, Reginato MJ. Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Adv Cancer Res. 2023; 157: 195–228.

[73]

Miao Z, Cao Q, Liao R, Chen X, Li X, Bai L, et al. Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness. J Exp Clin Cancer Res. 2022; 41(1): 169.

[74]

Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV. et al. Transition of Mesenchymal and Epithelial Cancer Cells Depends on alpha1-4 Galactosyltransferase-Mediated Glycosphingolipids. Cancer Res. 2018; 78(11): 2952–2965.

[75]

Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology. 2023; 33(7): 545–555.

[76]

Yu R, Longo J, van Leeuwen JE, Zhang C, Branchard E, Elbaz M, et al. Mevalonate Pathway Inhibition Slows Breast Cancer Metastasis via Reduced N-glycosylation Abundance and Branching. Cancer Res. 2021; 81(10): 2625–2635.

[77]

Song J, Liu W, Wang J, Hao J, Wang Y, You X, et al. GALNT6 promotes invasion and metastasis of human lung adenocarcinoma cells through O-glycosylating chaperone protein GRP78. Cell Death Dis. 2020; 11(5): 352.

[78]

He L, Guo Z, Wang W, Tian S, Lin R. FUT2 inhibits the EMT and metastasis of colorectal cancer by increasing LRP1 fucosylation. Cell Commun Signal. 2023; 21(1): 63.

[79]

Chu YD, Fan TC, Lai MW, Yeh CT. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis. 2022; 13(11): 956.

[80]

Cheng H, Wang S, Gao D, Yu K, Chen H, Huang Y, et al. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr). 2023; 46(2): 283–297.

[81]

Scott E, Archer Goode E, Garnham R, Hodgson K, Orozco-Moreno M. Turner H, et al. ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression. J Pathol. 2023; 261(1): 71–84.

[82]

Scott E, Hodgson K, Calle B, Turner H, Cheung K, Bermudez A, et al. Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene. 2023; 42(12): 926–937.

[83]

Lin WD, Fan TC, Hung JT, Yeo HL, Wang SH, Kuo CW, et al. Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer. Cancer Immunol Res. 2021; 9(1): 113–122.

[84]

Huang Y, Zhang HL, Li ZL, Du T, Chen YH, Wang Y, et al. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun. 2021; 12(1): 2672.

[85]

Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci Transl Med. 2022; 14(669): eabj1270.

[86]

Zhu Q, Wang H, Chai S, Xu L, Lin B, Yi W, et al. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci U S A. 2023; 120(13): e2216796120.

[87]

Shi C, Wang Y, Wu M, Chen Y, Liu F, Shen Z, et al. Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nat Commun. 2022; 13(1): 6951.

[88]

Cui Y, Li J, Zhang P, Yin D, Wang Z, Dai J, et al. B4GALT1 promotes immune escape by regulating the expression of PD-L1 at multiple levels in lung adenocarcinoma. J Exp Clin Cancer Res. 2023; 42(1): 146.

[89]

Ma XM, Luo YF, Zeng FF, Su C, Liu X, Li XP, et al. TGF-beta1-Mediated PD-L1 Glycosylation Contributes to Immune Escape via c-Jun/STT3A Pathway in Nasopharyngeal Carcinoma. Front Oncol. 2022; 12: 815437.

[90]

Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int. 2024; 44(2): 293–315.

[91]

Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020; 11(1): 36.

[92]

Tan M, Pan Q, Yu C, Zhai X, Gu J, Tao L, et al. PIGT promotes cell growth, glycolysis, and metastasis in bladder cancer by modulating GLUT1 glycosylation and membrane trafficking. J Transl Med. 2024; 22(1): 5.

[93]

Zhu Q, Zhou H, Wu L, Lai Z, Geng D, Yang W, et al. O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1. Nat Chem Biol. 2022; 18(10): 1087–1095.

[94]

Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, et al. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell. 2015; 28(5): 569–581.

[95]

Tan EP, McGreal SR, Graw S, Tessman R, Koppel SJ, Dhakal P, et al. Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. J Biol Chem. 2017; 292(36): 14940–14962.

[96]

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060–1072.

[97]

Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022; 22(7): 381–396.

[98]

Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023; 35(1): 84–100 e8.

[99]

Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 2023; 66: 100916.

[100]

Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 2022; 8(1): 40.

[101]

Ma H, Chen X, Mo S, Zhang Y, Mao X, Chen J, et al. Targeting N-glycosylation of 4F2hc mediated by glycosyltransferase B3GNT3 sensitizes ferroptosis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2023; 30(8): 1988–2004.

[102]

Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, et al. Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT. Adv Sci (Weinh). 2023; 10(33): e2302953.

[103]

Wang X, Liu M, Chu Y, Liu Y, Cao X, Zhang H, et al. O-GlcNAcylation of ZEB1 facilitated mesenchymal pancreatic cancer cell ferroptosis. Int J Biol Sci. 2022; 18(10): 4135–4150.

[104]

Schmitt CA, Wang B, Demaria M. Senescence and cancer -role and therapeutic opportunities. Nat Rev Clin Oncol. 2022; 19(10): 619–636.

[105]

Prieto LI, Sturmlechner I, Graves SI, Zhang C, Goplen NP, Yi ES, et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell. 2023; 41(7): 1261–1275 e6.

[106]

Zhang JW, Zhang D, Yin HS, Zhang H, Hong KQ, Yuan JP, et al. Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes. 2023; 15(1): 2197836.

[107]

Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016; 7(29): 44879–4905.

[108]

Lopez-Sambrooks C, Shrimal S, Khodier C, Flaherty DP, Rinis N, Charest JC, et al. Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol. 2016; 12(12): 1023–1030.

[109]

Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018; 128(11): 4924–4937.

[110]

Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, et al. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol. 2023; 236: 123855.

[111]

Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022; 19(10): 670–681.

[112]

Lee TH, Kim JS, Baek SJ, Kwak JM, Kim J. Diagnostic Accuracy of Carcinoembryonic Antigen (CEA) in Detecting Colorectal Cancer Recurrence Depending on Its Preoperative Level. J Gastrointest Surg. 2023; 27(8): 1694–1701.

[113]

Hoti N, Lih TS, Dong M, Zhang Z, Mangold L, Partin AW, et al. Urinary PSA and Serum PSA for Aggressive Prostate Cancer Detection. Cancers (Basel). 2023; 15(3): 960.

[114]

Anastasi E, Farina A, Granato T, Colaiacovo F, Pucci B, Tartaglione S, et al. Recent Insight about HE4 Role in Ovarian Cancer Oncogenesis. Int J Mol Sci. 2023; 24(13): 10479.

[115]

Behrouzi R, Barr CE, Crosbie EJ. HE4 as a Biomarker for Endometrial Cancer. Cancers (Basel). 2021; 13(19): 4764.

[116]

Cen S, Liu Z, Pan H, Han W. Clinicopathologic features and treatment advances in cancers with HER2 alterations. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188605.

[117]

Pretorius CJ, Wilgen U, Klingberg S, Zournazi A, Sanders L, Ungerer JPJ. Comparison between free beta subunit of human chorionic gonadotropin (hCG) and total hCG assays in adults with testicular cancer. Clin Chem Lab Med. 2023; 61(10): 1841–1849.

[118]

Felder M, Kapur A, Gonzalez-Bosquet J. Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014; 13: 129.

[119]

Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer. 2021; 1875(2): 188409.

[120]

Xu Y, Zhang P, Zhang K, Huang C. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188634.

[121]

Li H, Li L, Sun J, Dong S, Li H. Value of TCT combined with serum CA153 and CA50 in early diagnosis of cervical cancer and precancerous lesions. Pak J Med Sci. 2022; 38(6): 1471–1476.

[122]

Tang S, Wei L, Sun Y, Zhou F, Zhu S, Yang R, et al. CA153 in Breast Secretions as a Potential Molecular Marker for Diagnosing Breast Cancer: A Meta Analysis. PLoS One. 2016; 11(9): e0163030.

[123]

Li G, Zhang H, Zhang L, Liu H, Li S, Wang Y, et al. Serum Markers CA125, CA153, and CEA along with Inflammatory Cytokines in the Early Detection of Lung Cancer in High-Risk Populations. Biomed Res Int. 2022; 2022: 1394042.

[124]

Xu H, Huang K, Lin Y, Gong H, Ma X, Zhang D. Glycosyltransferase GLT8D1 and GLT8D2 serve as potential prognostic biomarkers correlated with Tumor Immunity in Gastric Cancer. BMC Med Genomics. 2023; 16(1): 123.

[125]

Pucci M, Malagolini N, Dall’Olio F. Glycosyltransferase B4GALNT2 as a Predictor of Good Prognosis in Colon Cancer: Lessons from Databases. Int J Mol Sci. 2021; 22(9): 4331.

[126]

Dong S, Wang Z, Huang B, Zhang J, Ge Y, Fan Q, et al. Bioinformatics insight into glycosyltransferase gene expression in gastric cancer: POFUT1 is a potential biomarker. Biochem Biophys Res Commun. 2017; 483(1): 171–177.

[127]

Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol. 2021; 185(2): 294–301.

[128]

Noda M, Okayama H, Tachibana K, Sakamoto W, Saito K, Thar Min AK, et al. Glycosyltransferase Gene Expression Identifies a Poor Prognostic Colorectal Cancer Subtype Associated with Mismatch Repair Deficiency and Incomplete Glycan Synthesis. Clin Cancer Res. 2018; 24(18): 4468–4481.

[129]

Guibourdenche J, Handschuh K, Tsatsaris V, Gerbaud P, Leguy MC, Muller F, et al. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab. 2010; 95(10): E240–E244.

[130]

Fernandez-Ponce C, Geribaldi-Doldan N. Sanchez-Gomar I, Quiroz RN, Ibarra LA, Escorcia LG, et al. The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci. 2021; 22(11): 5822.

[131]

Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020; 20(4): 209–215.

[132]

Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, et al. Coupling Aptamer-based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein-Specific Glycosylation. Angew Chem Int Ed Engl. 2021; 60(33): 18111–18115.

[133]

Zhu L, Xu Y, Kang S, Lin B, Zhang C, You Z, et al. Quantification-Promoted Discovery of Glycosylated Exosomal PD-L1 as a Potential Tumor Biomarker. Small Methods. 2022; 6(9): e2200549.

[134]

Krug J, Rodrian G, Petter K, Yang H, Khoziainova S, Guo W, et al. N-glycosylation Regulates Intrinsic IFN-gamma Resistance in Colorectal Cancer: Implications for Immunotherapy. Gastroenterology. 2023; 164(3): 392–406 e5.

[135]

Chen Y, Su L, Huang C, Wu S, Qiu X, Zhao X, et al. Galactosyltransferase B4GALT1 confers chemoresistance in pancreatic ductal adenocarcinomas by upregulating N-linked glycosylation of CDK11(p110). Cancer Lett. 2021; 500: 228–243.

[136]

Wu J, Chen S, Liu H, Zhang Z, Ni Z, Chen J, et al. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J Exp Clin Cancer Res. 2018; 37(1): 272.

[137]

Xi X, Wang J, Qin Y, Huang W, You Y, Zhan J. Glycosylated modification of MUC1 maybe a new target to promote drug sensitivity and efficacy for breast cancer chemotherapy. Cell Death Dis. 2022; 13(8): 708.

[138]

Aldonza MBD, Cha J, Yong I, Ku J, Sinitcyn P, Lee D, et al. Multi-targeted therapy resistance via drug-induced secretome fucosylation. Elife. 2023; 12: e75191.

[139]

Greco B, Malacarne V, De Girardi F, Scotti GM, Manfredi F, Angelino E, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci Transl Med. 2022; 14(628): eabg3072.

[140]

Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-beta receptor II in breast cancer. J Exp Clin Cancer Res. 2021; 40(1): 149.

[141]

Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov. 2021; 20(3): 217–243.

[142]

DeAngelo DJ, Jonas BA, Liesveld JL, Bixby DL, Advani AS, Marlton P, et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood. 2022; 139(8): 1135–1146.

[143]

Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022; 15(1): 28.

[144]

Padler-Karavani V. Glycan Microarray Reveal the Sweet Side of Cancer Vaccines. Cell Chem Biol. 2016; 23(12): 1446–1447.

[145]

Gabba A, Attariya R, Behren S, Pett C, van der Horst JC, Yurugi H, et al. MUC1 Glycopeptide Vaccine Modified with a GalNAc Glycocluster Targets the Macrophage Galactose C-type Lectin on Dendritic Cells to Elicit an Improved Humoral Response. J Am Chem Soc. 2023; 145(24): 13027–13037.

RIGHTS & PERMISSIONS

2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.

AI Summary AI Mindmap
PDF

364

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/