Altered glycosylation in cancer: molecular functions and therapeutic potential

Xuemeng Xu, Qiu Peng, Xianjie Jiang, Shiming Tan, Wenjuan Yang, Yaqian Han, Linda Oyang, Jinguan Lin, Mengzhou Shen, Jiewen Wang, Haofan Li, Longzheng Xia, Mingjing Peng, Nayiyuan Wu, Yanyan Tang, Hui Wang, Qianjin Liao, Yujuan Zhou

Cancer Communications ›› 2024, Vol. 44 ›› Issue (11) : 1316-1336.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (11) : 1316-1336. DOI: 10.1002/cac2.12610
REVIEW

Altered glycosylation in cancer: molecular functions and therapeutic potential

Author information +
History +

Abstract

Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate—glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.

Keywords

Glycosylation / immunity / cellular senescence / tumor biomarkers / cancer therapy

Cite this article

Download citation ▾
Xuemeng Xu, Qiu Peng, Xianjie Jiang, Shiming Tan, Wenjuan Yang, Yaqian Han, Linda Oyang, Jinguan Lin, Mengzhou Shen, Jiewen Wang, Haofan Li, Longzheng Xia, Mingjing Peng, Nayiyuan Wu, Yanyan Tang, Hui Wang, Qianjin Liao, Yujuan Zhou. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Communications, 2024, 44(11): 1316‒1336 https://doi.org/10.1002/cac2.12610

References

[1]
Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, et al. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin. 2021; 42(8): 1201–1211.
CrossRef Google scholar
[2]
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020; 5(1): 90.
CrossRef Google scholar
[3]
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev. 2021; 68: 101336.
CrossRef Google scholar
[4]
Millan-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications -cause and consequence of genome function. Nat Rev Genet. 2022; 23(9): 563–580.
CrossRef Google scholar
[5]
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, et al. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. Med Comm (2020). 2023; 4(3): e261.
CrossRef Google scholar
[6]
Eichler J. Protein glycosylation. Curr Biol. 2019; 29(7): R229–R231.
CrossRef Google scholar
[7]
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020; 21(12): 729–749.
CrossRef Google scholar
[8]
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv. 2024; 70: 108283.
CrossRef Google scholar
[9]
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol. 2024; 153(1): 55–66.
CrossRef Google scholar
[10]
Hoek M, Demmers LC, Wu W, Heck AJR. Allotype-Specific Glycosylation and Cellular Localization of Human Leukocyte Antigen Class I Proteins. J Proteome Res. 2021; 20(9): 4518–4528.
CrossRef Google scholar
[11]
Kissel T, Toes REM, Huizinga TWJ, Wuhrer M. Glycobiology of rheumatic diseases. Nat Rev Rheumatol. 2023; 19(1): 28–43.
CrossRef Google scholar
[12]
Wojcik I, Wuhrer M, Heeringa P, Stegeman CA, Rutgers A, Falck D. Specific IgG glycosylation differences precede relapse in PR3-ANCA associated vasculitis patients with and without ANCA rise. Front Immunol. 2023; 14: 1214945.
CrossRef Google scholar
[13]
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci. 2024; 336: 122303.
CrossRef Google scholar
[14]
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol. 2023; 14: 1168023.
CrossRef Google scholar
[15]
Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015; 10: 473–510.
CrossRef Google scholar
[16]
Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, et al. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv. 2023; 66: 108149.
CrossRef Google scholar
[17]
Grzesik K, Janik M, Hoja-Lukowicz D. The hidden potential of glycomarkers: Glycosylation studies in the service of cancer diagnosis and treatment. Biochim Biophys Acta Rev Cancer. 2023; 1878(3): 188889.
CrossRef Google scholar
[18]
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015; 15(9): 540–555.
CrossRef Google scholar
[19]
Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell. 2019; 36(1): 6–16.
CrossRef Google scholar
[20]
Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights into the function of CD24: A driving force in cancer. Int J Cancer. 2021; 148(3): 546–559.
CrossRef Google scholar
[21]
Silsirivanit A. Glycosylation markers in cancer. Adv Clin Chem. 2019; 89: 189–213.
CrossRef Google scholar
[22]
RodrIguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol. 2018; 18(3): 204–211.
CrossRef Google scholar
[23]
Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Cancer Biol. 2017; 44: 141–152.
CrossRef Google scholar
[24]
Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023; 55(7): 1357–1370.
CrossRef Google scholar
[25]
Lopez-Otin C, Pietrocola F, Roiz-Valle D. Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023; 35(1): 12–35.
CrossRef Google scholar
[26]
Kang N, Son S, Min S, Hong H, Kim C, An J, et al. Stimuli-responsive ferroptosis for cancer therapy. Chem Soc Rev. 2023; 52(12): 3955–3972.
CrossRef Google scholar
[27]
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005; 5(7): 526–542.
CrossRef Google scholar
[28]
Zhou JY, Cobb BA. Glycans in Immunologic Health and Disease. Annu Rev Immunol. 2021; 39: 511–536.
CrossRef Google scholar
[29]
Song Y, Zhang F, Linhardt RJ. Glycosaminoglycans. Adv Exp Med Biol. 2021; 1325: 103–116.
CrossRef Google scholar
[30]
Varki A. Biological roles of glycans. Glycobiology. 2017; 27(1): 3–49.
CrossRef Google scholar
[31]
Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000; 69: 69–93.
CrossRef Google scholar
[32]
Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, et al. Potential roles of N-glycosylation in cell adhesion. Glycoconj J. 2012; 29(8-9): 599–607.
CrossRef Google scholar
[33]
Gedaj A, Gregorczyk P, Zukowska D, Chorazewska A, Ciura K, Kalka M, et al. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev. 2024; 77: 39–55.
CrossRef Google scholar
[34]
Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, et al. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol Cell. 2019; 75(2): 394–407 e5.
CrossRef Google scholar
[35]
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev. 2021; 121(3): 1513–1581.
CrossRef Google scholar
[36]
Yang W, Tian E, Chernish A, McCluggage P, Dalal K, Lara A, et al. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder. Proc Natl Acad Sci U S A. 2023; 120(43): e2303703120.
CrossRef Google scholar
[37]
Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012; 13(7): 448–462.
CrossRef Google scholar
[38]
Suzuki T. Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med. 2016; 51: 89–103.
CrossRef Google scholar
[39]
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol. 2016; 428(16): 3305–3324.
CrossRef Google scholar
[40]
Cherepanova N, Shrimal S, Gilmore R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol. 2016; 41: 57–65.
CrossRef Google scholar
[41]
Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol. 2015; 41: 79–89.
CrossRef Google scholar
[42]
Saha A, Bello D, Fernandez-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev. 2021; 50(18): 10451–10485.
CrossRef Google scholar
[43]
Balana AT, Levine PM, Craven TW, Mukherjee S, Pedowitz NJ, Moon SP, et al. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nat Chem. 2021; 13(5): 441–450.
CrossRef Google scholar
[44]
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev. 2021; 101(2): 427–493.
CrossRef Google scholar
[45]
Gill DJ, Clausen H, Bard F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol. 2011; 21(3): 149–158.
CrossRef Google scholar
[46]
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019; 15(6): 346–366.
CrossRef Google scholar
[47]
Pathangey LB, Lakshminarayanan V, Suman VJ, Pockaj BA, Mukherjee P, Gendler SJ. Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes. Biomolecules. 2016; 6(3): 31.
CrossRef Google scholar
[48]
Julenius K. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology. 2007; 17(8): 868–876.
CrossRef Google scholar
[49]
Crine SL, Acharya KR. Molecular basis of C-mannosylation -a structural perspective. FEBS J. 2022; 289(24): 7670–7687.
CrossRef Google scholar
[50]
Shcherbakova A, Preller M, Taft MH, Pujols J, Ventura S, Tiemann B, et al. C-mannosylation supports folding and enhances stability of thrombospondin repeats. Elife. 2019; 8: e52978.
CrossRef Google scholar
[51]
Hu W, Zhang R, Chen W, Lin D, Wei K, Li J, et al. Glycosylation at Asn254 Is Required for the Activation of the PDGF-C Protein. Front Mol Biosci. 2021; 8: 665552.
CrossRef Google scholar
[52]
Bandini G, Albuquerque-Wendt A. Hegermann J, Samuelson J, Routier FH. Protein O-and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology. 2019; 146(14): 1755–1766.
CrossRef Google scholar
[53]
Lopaticki S, McConville R, John A, Geoghegan N, Mohamed SD, Verzier L, et al. Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun. 2022; 13(1): 4400.
CrossRef Google scholar
[54]
Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res. 2016; 57(1): 6–24.
CrossRef Google scholar
[55]
Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020; 10(3): 190290.
CrossRef Google scholar
[56]
Zhang H, Su J, Li B, Gao Y, Liu M, He L, et al. Structure of human glycosylphosphatidylinositol transamidase. Nat Struct Mol Biol. 2022; 29(3): 203–209.
CrossRef Google scholar
[57]
Guo Z. Glycosphingolipid and Glycosylphosphatidylinositol Affect Each Other in and on the Cell. Chembiochem. 2023; 24(13): e202200761.
CrossRef Google scholar
[58]
Elishmereni M, Levi-Schaffer F. CD48: A co-stimulatory receptor of immunity. Int J Biochem Cell Biol. 2011; 43(1): 25–28.
CrossRef Google scholar
[59]
White D, Cote-Martin A. Bleck M, Garaffa N, Shaaban A, Wu H, et al. Programmed Cell Death-1 (PD-1) anchoring to the GPI-linked co-receptor CD48 reveals a novel mechanism to modulate PD-1-dependent inhibition of human T cells. Mol Immunol. 2023; 156: 31–38.
CrossRef Google scholar
[60]
Bravo-Perez C, Guarnera L, Williams ND, Visconte V. Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment. Medicina (Kaunas). 2023; 59(9): 1612.
CrossRef Google scholar
[61]
Paprocka J, Hutny M, Hofman J, Tokarska A, Klaniewska M, Szczaluba K, et al. Spectrum of Neurological Symptoms in Glycosylphosphatidylinositol Biosynthesis Defects: Systematic Review. Front Neurol. 2021; 12: 758899.
CrossRef Google scholar
[62]
Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021; 184(12): 3109–3124 e22.
CrossRef Google scholar
[63]
Disney MD. A glimpse at the glycoRNA world. Cell. 2021; 184(12): 3080–3081.
CrossRef Google scholar
[64]
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, et al. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol.2024; 42(4): 608–616.
CrossRef Google scholar
[65]
Zhang N, Tang W, Torres L, Wang X, Ajaj Y, Zhu L, et al. Cell surface RNAs control neutrophil recruitment. Cell. 2024; 187(4): 846–860.
CrossRef Google scholar
[66]
Caval T, Alisson-Silva F. Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics. 2023; 13(8): 2605–2615.
CrossRef Google scholar
[67]
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med. 2022; 219(6): e20211505.
CrossRef Google scholar
[68]
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31–46.
CrossRef Google scholar
[69]
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 2021; 1875(1): 188464.
CrossRef Google scholar
[70]
Supruniuk K, Radziejewska I. MUC1 is an oncoprotein with a significant role in apoptosis (Review). Int J Oncol. 2021; 59(3): 68.
CrossRef Google scholar
[71]
Mallard BW, Tiralongo J. Cancer stem cell marker glycosylation: Nature, function and significance. Glycoconj J. 2017; 34(4): 441–452.
CrossRef Google scholar
[72]
Le Minh G, Reginato MJ. Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Adv Cancer Res. 2023; 157: 195–228.
CrossRef Google scholar
[73]
Miao Z, Cao Q, Liao R, Chen X, Li X, Bai L, et al. Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness. J Exp Clin Cancer Res. 2022; 41(1): 169.
CrossRef Google scholar
[74]
Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV. et al. Transition of Mesenchymal and Epithelial Cancer Cells Depends on alpha1-4 Galactosyltransferase-Mediated Glycosphingolipids. Cancer Res. 2018; 78(11): 2952–2965.
CrossRef Google scholar
[75]
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology. 2023; 33(7): 545–555.
CrossRef Google scholar
[76]
Yu R, Longo J, van Leeuwen JE, Zhang C, Branchard E, Elbaz M, et al. Mevalonate Pathway Inhibition Slows Breast Cancer Metastasis via Reduced N-glycosylation Abundance and Branching. Cancer Res. 2021; 81(10): 2625–2635.
CrossRef Google scholar
[77]
Song J, Liu W, Wang J, Hao J, Wang Y, You X, et al. GALNT6 promotes invasion and metastasis of human lung adenocarcinoma cells through O-glycosylating chaperone protein GRP78. Cell Death Dis. 2020; 11(5): 352.
CrossRef Google scholar
[78]
He L, Guo Z, Wang W, Tian S, Lin R. FUT2 inhibits the EMT and metastasis of colorectal cancer by increasing LRP1 fucosylation. Cell Commun Signal. 2023; 21(1): 63.
CrossRef Google scholar
[79]
Chu YD, Fan TC, Lai MW, Yeh CT. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis. 2022; 13(11): 956.
CrossRef Google scholar
[80]
Cheng H, Wang S, Gao D, Yu K, Chen H, Huang Y, et al. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr). 2023; 46(2): 283–297.
CrossRef Google scholar
[81]
Scott E, Archer Goode E, Garnham R, Hodgson K, Orozco-Moreno M. Turner H, et al. ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression. J Pathol. 2023; 261(1): 71–84.
CrossRef Google scholar
[82]
Scott E, Hodgson K, Calle B, Turner H, Cheung K, Bermudez A, et al. Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene. 2023; 42(12): 926–937.
CrossRef Google scholar
[83]
Lin WD, Fan TC, Hung JT, Yeo HL, Wang SH, Kuo CW, et al. Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer. Cancer Immunol Res. 2021; 9(1): 113–122.
CrossRef Google scholar
[84]
Huang Y, Zhang HL, Li ZL, Du T, Chen YH, Wang Y, et al. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun. 2021; 12(1): 2672.
CrossRef Google scholar
[85]
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci Transl Med. 2022; 14(669): eabj1270.
CrossRef Google scholar
[86]
Zhu Q, Wang H, Chai S, Xu L, Lin B, Yi W, et al. O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci U S A. 2023; 120(13): e2216796120.
CrossRef Google scholar
[87]
Shi C, Wang Y, Wu M, Chen Y, Liu F, Shen Z, et al. Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nat Commun. 2022; 13(1): 6951.
CrossRef Google scholar
[88]
Cui Y, Li J, Zhang P, Yin D, Wang Z, Dai J, et al. B4GALT1 promotes immune escape by regulating the expression of PD-L1 at multiple levels in lung adenocarcinoma. J Exp Clin Cancer Res. 2023; 42(1): 146.
CrossRef Google scholar
[89]
Ma XM, Luo YF, Zeng FF, Su C, Liu X, Li XP, et al. TGF-beta1-Mediated PD-L1 Glycosylation Contributes to Immune Escape via c-Jun/STT3A Pathway in Nasopharyngeal Carcinoma. Front Oncol. 2022; 12: 815437.
CrossRef Google scholar
[90]
Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int. 2024; 44(2): 293–315.
CrossRef Google scholar
[91]
Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020; 11(1): 36.
CrossRef Google scholar
[92]
Tan M, Pan Q, Yu C, Zhai X, Gu J, Tao L, et al. PIGT promotes cell growth, glycolysis, and metastasis in bladder cancer by modulating GLUT1 glycosylation and membrane trafficking. J Transl Med. 2024; 22(1): 5.
CrossRef Google scholar
[93]
Zhu Q, Zhou H, Wu L, Lai Z, Geng D, Yang W, et al. O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1. Nat Chem Biol. 2022; 18(10): 1087–1095.
CrossRef Google scholar
[94]
Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, et al. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell. 2015; 28(5): 569–581.
CrossRef Google scholar
[95]
Tan EP, McGreal SR, Graw S, Tessman R, Koppel SJ, Dhakal P, et al. Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. J Biol Chem. 2017; 292(36): 14940–14962.
CrossRef Google scholar
[96]
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060–1072.
CrossRef Google scholar
[97]
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022; 22(7): 381–396.
CrossRef Google scholar
[98]
Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 2023; 35(1): 84–100 e8.
CrossRef Google scholar
[99]
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 2023; 66: 100916.
CrossRef Google scholar
[100]
Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 2022; 8(1): 40.
CrossRef Google scholar
[101]
Ma H, Chen X, Mo S, Zhang Y, Mao X, Chen J, et al. Targeting N-glycosylation of 4F2hc mediated by glycosyltransferase B3GNT3 sensitizes ferroptosis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2023; 30(8): 1988–2004.
CrossRef Google scholar
[102]
Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, et al. Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT. Adv Sci (Weinh). 2023; 10(33): e2302953.
CrossRef Google scholar
[103]
Wang X, Liu M, Chu Y, Liu Y, Cao X, Zhang H, et al. O-GlcNAcylation of ZEB1 facilitated mesenchymal pancreatic cancer cell ferroptosis. Int J Biol Sci. 2022; 18(10): 4135–4150.
CrossRef Google scholar
[104]
Schmitt CA, Wang B, Demaria M. Senescence and cancer -role and therapeutic opportunities. Nat Rev Clin Oncol. 2022; 19(10): 619–636.
CrossRef Google scholar
[105]
Prieto LI, Sturmlechner I, Graves SI, Zhang C, Goplen NP, Yi ES, et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell. 2023; 41(7): 1261–1275 e6.
CrossRef Google scholar
[106]
Zhang JW, Zhang D, Yin HS, Zhang H, Hong KQ, Yuan JP, et al. Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes. 2023; 15(1): 2197836.
CrossRef Google scholar
[107]
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016; 7(29): 44879–4905.
CrossRef Google scholar
[108]
Lopez-Sambrooks C, Shrimal S, Khodier C, Flaherty DP, Rinis N, Charest JC, et al. Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol. 2016; 12(12): 1023–1030.
CrossRef Google scholar
[109]
Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest. 2018; 128(11): 4924–4937.
CrossRef Google scholar
[110]
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, et al. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol. 2023; 236: 123855.
CrossRef Google scholar
[111]
Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022; 19(10): 670–681.
CrossRef Google scholar
[112]
Lee TH, Kim JS, Baek SJ, Kwak JM, Kim J. Diagnostic Accuracy of Carcinoembryonic Antigen (CEA) in Detecting Colorectal Cancer Recurrence Depending on Its Preoperative Level. J Gastrointest Surg. 2023; 27(8): 1694–1701.
CrossRef Google scholar
[113]
Hoti N, Lih TS, Dong M, Zhang Z, Mangold L, Partin AW, et al. Urinary PSA and Serum PSA for Aggressive Prostate Cancer Detection. Cancers (Basel). 2023; 15(3): 960.
CrossRef Google scholar
[114]
Anastasi E, Farina A, Granato T, Colaiacovo F, Pucci B, Tartaglione S, et al. Recent Insight about HE4 Role in Ovarian Cancer Oncogenesis. Int J Mol Sci. 2023; 24(13): 10479.
CrossRef Google scholar
[115]
Behrouzi R, Barr CE, Crosbie EJ. HE4 as a Biomarker for Endometrial Cancer. Cancers (Basel). 2021; 13(19): 4764.
CrossRef Google scholar
[116]
Cen S, Liu Z, Pan H, Han W. Clinicopathologic features and treatment advances in cancers with HER2 alterations. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188605.
CrossRef Google scholar
[117]
Pretorius CJ, Wilgen U, Klingberg S, Zournazi A, Sanders L, Ungerer JPJ. Comparison between free beta subunit of human chorionic gonadotropin (hCG) and total hCG assays in adults with testicular cancer. Clin Chem Lab Med. 2023; 61(10): 1841–1849.
CrossRef Google scholar
[118]
Felder M, Kapur A, Gonzalez-Bosquet J. Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014; 13: 129.
CrossRef Google scholar
[119]
Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer. 2021; 1875(2): 188409.
CrossRef Google scholar
[120]
Xu Y, Zhang P, Zhang K, Huang C. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188634.
CrossRef Google scholar
[121]
Li H, Li L, Sun J, Dong S, Li H. Value of TCT combined with serum CA153 and CA50 in early diagnosis of cervical cancer and precancerous lesions. Pak J Med Sci. 2022; 38(6): 1471–1476.
CrossRef Google scholar
[122]
Tang S, Wei L, Sun Y, Zhou F, Zhu S, Yang R, et al. CA153 in Breast Secretions as a Potential Molecular Marker for Diagnosing Breast Cancer: A Meta Analysis. PLoS One. 2016; 11(9): e0163030.
CrossRef Google scholar
[123]
Li G, Zhang H, Zhang L, Liu H, Li S, Wang Y, et al. Serum Markers CA125, CA153, and CEA along with Inflammatory Cytokines in the Early Detection of Lung Cancer in High-Risk Populations. Biomed Res Int. 2022; 2022: 1394042.
CrossRef Google scholar
[124]
Xu H, Huang K, Lin Y, Gong H, Ma X, Zhang D. Glycosyltransferase GLT8D1 and GLT8D2 serve as potential prognostic biomarkers correlated with Tumor Immunity in Gastric Cancer. BMC Med Genomics. 2023; 16(1): 123.
CrossRef Google scholar
[125]
Pucci M, Malagolini N, Dall’Olio F. Glycosyltransferase B4GALNT2 as a Predictor of Good Prognosis in Colon Cancer: Lessons from Databases. Int J Mol Sci. 2021; 22(9): 4331.
CrossRef Google scholar
[126]
Dong S, Wang Z, Huang B, Zhang J, Ge Y, Fan Q, et al. Bioinformatics insight into glycosyltransferase gene expression in gastric cancer: POFUT1 is a potential biomarker. Biochem Biophys Res Commun. 2017; 483(1): 171–177.
CrossRef Google scholar
[127]
Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol. 2021; 185(2): 294–301.
CrossRef Google scholar
[128]
Noda M, Okayama H, Tachibana K, Sakamoto W, Saito K, Thar Min AK, et al. Glycosyltransferase Gene Expression Identifies a Poor Prognostic Colorectal Cancer Subtype Associated with Mismatch Repair Deficiency and Incomplete Glycan Synthesis. Clin Cancer Res. 2018; 24(18): 4468–4481.
CrossRef Google scholar
[129]
Guibourdenche J, Handschuh K, Tsatsaris V, Gerbaud P, Leguy MC, Muller F, et al. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab. 2010; 95(10): E240–E244.
CrossRef Google scholar
[130]
Fernandez-Ponce C, Geribaldi-Doldan N. Sanchez-Gomar I, Quiroz RN, Ibarra LA, Escorcia LG, et al. The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci. 2021; 22(11): 5822.
CrossRef Google scholar
[131]
Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020; 20(4): 209–215.
CrossRef Google scholar
[132]
Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, et al. Coupling Aptamer-based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein-Specific Glycosylation. Angew Chem Int Ed Engl. 2021; 60(33): 18111–18115.
CrossRef Google scholar
[133]
Zhu L, Xu Y, Kang S, Lin B, Zhang C, You Z, et al. Quantification-Promoted Discovery of Glycosylated Exosomal PD-L1 as a Potential Tumor Biomarker. Small Methods. 2022; 6(9): e2200549.
CrossRef Google scholar
[134]
Krug J, Rodrian G, Petter K, Yang H, Khoziainova S, Guo W, et al. N-glycosylation Regulates Intrinsic IFN-gamma Resistance in Colorectal Cancer: Implications for Immunotherapy. Gastroenterology. 2023; 164(3): 392–406 e5.
CrossRef Google scholar
[135]
Chen Y, Su L, Huang C, Wu S, Qiu X, Zhao X, et al. Galactosyltransferase B4GALT1 confers chemoresistance in pancreatic ductal adenocarcinomas by upregulating N-linked glycosylation of CDK11(p110). Cancer Lett. 2021; 500: 228–243.
CrossRef Google scholar
[136]
Wu J, Chen S, Liu H, Zhang Z, Ni Z, Chen J, et al. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J Exp Clin Cancer Res. 2018; 37(1): 272.
CrossRef Google scholar
[137]
Xi X, Wang J, Qin Y, Huang W, You Y, Zhan J. Glycosylated modification of MUC1 maybe a new target to promote drug sensitivity and efficacy for breast cancer chemotherapy. Cell Death Dis. 2022; 13(8): 708.
CrossRef Google scholar
[138]
Aldonza MBD, Cha J, Yong I, Ku J, Sinitcyn P, Lee D, et al. Multi-targeted therapy resistance via drug-induced secretome fucosylation. Elife. 2023; 12: e75191.
CrossRef Google scholar
[139]
Greco B, Malacarne V, De Girardi F, Scotti GM, Manfredi F, Angelino E, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci Transl Med. 2022; 14(628): eabg3072.
CrossRef Google scholar
[140]
Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-beta receptor II in breast cancer. J Exp Clin Cancer Res. 2021; 40(1): 149.
CrossRef Google scholar
[141]
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov. 2021; 20(3): 217–243.
CrossRef Google scholar
[142]
DeAngelo DJ, Jonas BA, Liesveld JL, Bixby DL, Advani AS, Marlton P, et al. Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood. 2022; 139(8): 1135–1146.
CrossRef Google scholar
[143]
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022; 15(1): 28.
CrossRef Google scholar
[144]
Padler-Karavani V. Glycan Microarray Reveal the Sweet Side of Cancer Vaccines. Cell Chem Biol. 2016; 23(12): 1446–1447.
CrossRef Google scholar
[145]
Gabba A, Attariya R, Behren S, Pett C, van der Horst JC, Yurugi H, et al. MUC1 Glycopeptide Vaccine Modified with a GalNAc Glycocluster Targets the Macrophage Galactose C-type Lectin on Dendritic Cells to Elicit an Improved Humoral Response. J Am Chem Soc. 2023; 145(24): 13027–13037.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.
PDF

Accesses

Citations

Detail

Sections
Recommended

/