
Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis
Dae-Hwan Kim, Minjeong Sung, Myong-Suk Park, Eun-Gene Sun, Sumin Yoon, Kyung Hyun Yoo, Kamalakannan Radhakrishnan, Sung Yun Jung, Woo-Kyun Bae, Sang-Hee Cho, Ik-Joo Chung
Cancer Communications ›› 2024, Vol. 44 ›› Issue (10) : 1106-1129.
Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis
Background: Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-β1 (TGF-β1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-β1 signaling pathway.
Methods: The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-β1 axis. The effects of altered TGF-β1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice.
Results: In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-β1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-β1 activated JunB transcription factor, which in turn promoted the TGF-β1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-β1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-β1.
Conclusion: LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-β1 signaling pathway, making it a promising therapeutic target in TGF-β1-related diseases.
F-actin / FAK / hepatic carcinogenesis / Integrin αV / Interferon α / JunB / LGALS3BP / metabolic dysfuntion-associated steatohepatitis / tensile force, TGF-β1
[1] |
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021; 7(1): 6.
CrossRef
Google scholar
|
[2] |
Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018; 19(3): 222–232.
CrossRef
Google scholar
|
[3] |
Craig AJ, von Felden J, Garcia-Lezana T. Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020; 17(3): 139–152.
CrossRef
Google scholar
|
[4] |
Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, et al. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 2019; 15(8): e1008002.
CrossRef
Google scholar
|
[5] |
Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol. 2018; 104(4): 777–786.
CrossRef
Google scholar
|
[6] |
Laubli H, Alisson-Silva F. Stanczak MA, Siddiqui SS, Deng L, Verhagen A, et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem. 2014; 289(48): 33481–33491.
CrossRef
Google scholar
|
[7] |
Kono M, Nakamura Y, Oyama Y, Mori K, Hozumi H, Karayama M, et al. Increased levels of serum Wisteria floribunda agglutinin-positive Mac-2 binding protein in idiopathic pulmonary fibrosis. Respir Med. 2016; 115: 46–52.
CrossRef
Google scholar
|
[8] |
Alkhouri N, Johnson C, Adams L, Kitajima S, Tsuruno C, Colpitts TL, et al. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein levels predict the presence of fibrotic nonalcoholic steatohepatitis (NASH) and NASH cirrhosis. PLoS One. 2018; 13(8): e0202226.
CrossRef
Google scholar
|
[9] |
Costa J, Pronto-Laborinho A. Pinto S, Gromicho M, Bonucci S, Tranfield E, et al. Investigating LGALS3BP/90 K glycoprotein in the cerebrospinal fluid of patients with neurological diseases. Sci Rep. 2020; 10(1): 5649.
CrossRef
Google scholar
|
[10] |
Iacobelli S, Natoli C, D’Egidio M, Tamburrini E, Antinori A, Ortona L. Lipoprotein 90K in human immunodeficiency virus-infected patients: a further serologic marker of progression. J Infect Dis. 1991; 164(4): 819.
CrossRef
Google scholar
|
[11] |
Piccolo E, Tinari N, Semeraro D, Traini S, Fichera I, Cumashi A, et al. LGALS3BP, lectin galactoside-bindin. soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med (Berl). 2013; 91(1): 83–94.
CrossRef
Google scholar
|
[12] |
Traini S, Piccolo E, Tinari N, Rossi C, La Sorda R, Spinella F, et al. Inhibition of tumor growth and angiogenesis by SP-2, an anti-lectin, galactoside-binding solubl. 3 binding protein (LGALS3BP) antibody. Mol Cancer Ther. 2014; 13(4): 916–925.
CrossRef
Google scholar
|
[13] |
Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med. 2021; 19(1): 405.
CrossRef
Google scholar
|
[14] |
Inoue T, Tanaka Y. Novel biomarkers for the management of chronic hepatitis B. Clin Mol Hepatol. 2020; 26(3): 261–279.
CrossRef
Google scholar
|
[15] |
Chuaypen N, Chittmittraprap S, Pinjaroen N, Sirichindakul B, Poovorawan Y, Tanaka Y, et al. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein level as a diagnostic marker of hepatitis B virus-related hepatocellular carcinoma. Hepatol Res. 2018; 48(11): 872–881.
CrossRef
Google scholar
|
[16] |
Artini M, Natoli C, Tinari N, Costanzo A, Marinelli R, Balsano C, et al. Elevated serum levels of 90K/MAC-2 BP predict unresponsiveness to alpha-interferon therapy in chronic HCV hepatitis patients. J Hepatol. 1996; 25(2): 212–217.
CrossRef
Google scholar
|
[17] |
Kittl EM, Hofmann J, Hartmann G, Sebesta C, Beer F, Bauer K, et al. Serum protein 90K/Mac-2BP is an independent predictor of disease severity during hepatitis C virus infection. Clin Chem Lab Med. 2000; 38(3): 205–208.
CrossRef
Google scholar
|
[18] |
Gutmann C, Takov K, Burnap SA, Singh B, Ali H, Theofilatos K, et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat Commun. 2021; 12(1): 3406.
CrossRef
Google scholar
|
[19] |
Tawara S, Tatsumi T, Iio S, Kobayashi I, Shigekawa M, Hikita H, et al. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C. PLoS One. 2016; 11(3): e0151828.
CrossRef
Google scholar
|
[20] |
Kuno A, Ikehara Y, Tanaka Y, Ito K, Matsuda A, Sekiya S, et al. A serum "sweet-doughnut" protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013; 3: 1065.
CrossRef
Google scholar
|
[21] |
Saleh SA, Salama MM, Alhusseini MM, Mohamed GA. M2BPGi for assessing liver fibrosis in patients with hepatitis C treated with direct-acting antivirals. World J Gastroenterol. 2020; 26(21): 2864–2876.
CrossRef
Google scholar
|
[22] |
Iacovazzi PA, Trisolini A, Barletta D, Elba S, Manghisi OG, Correale M. Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: a comparison with alpha-fetoprotein. Clin Chem Lab Med. 2001; 39(10): 961–965.
CrossRef
Google scholar
|
[23] |
Correale M, Giannuzzi V, Iacovazzi PA, Valenza MA, Lanzillotta S, Abbate I, et al. Serum 90K/MAC-2BP glycoprotein levels in hepatocellular carcinoma and cirrhosis. Anticancer Res. 1999; 19(4C): 3469–3472.
|
[24] |
Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021; 18(1): 9–34.
CrossRef
Google scholar
|
[25] |
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022; 21(1): 104.
CrossRef
Google scholar
|
[26] |
Meng XM, Nikolic-Paterson DJ. Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016; 12(6): 325–338.
CrossRef
Google scholar
|
[27] |
Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer. 2013; 13(11): 788–799.
CrossRef
Google scholar
|
[28] |
Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999; 96(3): 319–328.
CrossRef
Google scholar
|
[29] |
Wipff PJ, Hinz B. Integrins and the activation of latent transforming growth factor beta1 -an intimate relationship. Eur J Cell Biol. 2008; 87(8-9): 601–615.
CrossRef
Google scholar
|
[30] |
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-beta and TGF-beta-Related Proteins. Cold Spring Harb Perspect Biol. 2016; 8(6): a021907.
CrossRef
Google scholar
|
[31] |
Hong CS, Park MR, Sun EG, Choi W, Hwang JE, Bae WK, et al. Gal-3BP Negatively Regulates NF-kappaB Signaling by Inhibiting the Activation of TAK1. Front Immunol. 2019; 10: 1760.
CrossRef
Google scholar
|
[32] |
Uehara T, Pogribny IP, Rusyn I. The DEN and CCl(4) -Induced Mouse Model of Fibrosis and Inflammation-Associated Hepatocellular Carcinoma. Curr Protoc. 2021; 1(8): e211.
CrossRef
Google scholar
|
[33] |
Fujii T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM, et al. Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol. 2010; 10: 79.
CrossRef
Google scholar
|
[34] |
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010; 140(2): 197–208.
CrossRef
Google scholar
|
[35] |
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021; 1(3): e90.
CrossRef
Google scholar
|
[36] |
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4): 576–589.
CrossRef
Google scholar
|
[37] |
Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC. TGF-beta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 2012; 12: 26.
CrossRef
Google scholar
|
[38] |
Santibanez JF, Obradovic H, Kukolj T, Krstic J. Transforming growth factor-beta, matrix metalloproteinases, and urokinase-typ. plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn. 2018; 247(3): 382–395.
CrossRef
Google scholar
|
[39] |
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, et al. TGF-beta signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024; 9(1): 61.
CrossRef
Google scholar
|
[40] |
Alvarez MD, Ronco MT, Ochoa JE, Monti JA, Carnovale CE, Pisani GB, et al. Interferon α-induced apoptosis on rat preneoplastic liver is mediated by hepatocytic transforming growth factor β. Hepatology. 2004; 40(2): 394–402.
CrossRef
Google scholar
|
[41] |
Alvarez Mde L, Quiroga AD, Parody JP, Ronco MT, Frances DE, Carnovale CE, et al. Cross-talk between IFN-alpha and TGF-beta1 signaling pathways in preneoplastic rat liver. Growth Factors. 2009; 27(1): 1–11.
CrossRef
Google scholar
|
[42] |
Jonk LJ, Itoh S, Heldin CH, ten Dijke P, Kruijer W. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem. 1998; 273(33): 21145–21152.
CrossRef
Google scholar
|
[43] |
Sundqvist A, Morikawa M, Ren J, Vasilaki E, Kawasaki N, Kobayashi M, et al. JUNB governs a feed-forward network of TGFbeta signaling that aggravates breast cancer invasion. Nucleic Acids Res. 2018; 46(3): 1180–1195.
CrossRef
Google scholar
|
[44] |
Hariyanto NI, Yo EC, Wanandi SI. Regulation and Signaling of TGF-beta Autoinduction. Int J Mol Cell Med. 2021; 10(4): 234–247.
|
[45] |
Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature. 1998; 394(6696): 909–913.
CrossRef
Google scholar
|
[46] |
Cirkel GA, Kerklaan BM, Vanhoutte F, Van der Aa A, Lorenzon G, Namour F, et al. A dose escalating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies. Invest New Drugs. 2016; 34(2): 184–192.
CrossRef
Google scholar
|
[47] |
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-beta1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity. Pharmaceuticals (Basel). 2022; 15(5): 618.
CrossRef
Google scholar
|
[48] |
Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol. 2010; 11(5): 353–365.
CrossRef
Google scholar
|
[49] |
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther. 2023; 8(1): 1.
CrossRef
Google scholar
|
[50] |
Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-beta. Nature. 2017; 542(7639): 55–59.
CrossRef
Google scholar
|
[51] |
Grassadonia A, Graziano V, Pagotto S, Veronese A, Giuliani C, Marchisio M, et al. Tgf-beta1 transcriptionally promotes 90K expression: possible implications for cancer progression. Cell Death Discov. 2021; 7(1): 86.
CrossRef
Google scholar
|
[52] |
Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med. 2020; 12(572): eaba4448.
CrossRef
Google scholar
|
[53] |
Ikawa-Yoshida A, Matsuo S, Kato A, Ohmori Y, Higashida A, Kaneko E, et al. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet. Int J Exp Pathol. 2017; 98(4): 221–233.
CrossRef
Google scholar
|
[54] |
Tokinoya K, Sekine N, Aoki K, Ono S, Kuji T, Sugasawa T, et al. Effects of renalase deficiency on liver fibrosis markers in a nonalcoholic steatohepatitis mouse model. Mol Med Rep. 2021; 23(3): 210.
CrossRef
Google scholar
|
[55] |
Coffey RJ, Jr., Kost LJ, Lyons RM, Moses HL, LaRusso NF. Hepatic processing of transforming growth factor beta in the rat. Uptake, metabolism, and biliary excretion. J Clin Invest. 1987; 80(3): 750–757.
CrossRef
Google scholar
|
[56] |
Cheung KJ, Libbrecht L, Tilleman K, Deforce D, Colle I, Van Vlierberghe H. Galectin-3-binding protein: a serological and histological assessment in accordance with hepatitis C-related liver fibrosis. Eur J Gastroenterol Hepatol. 2010; 22(9): 1066–1073.
CrossRef
Google scholar
|
[57] |
Yang B, Zhang J, Sun L, Huang T, Kong Y, Li L, et al. Mapping Novel Biomarkers of Liver Injury by Tissue Proteomic Analysis. ACS Omega. 2021; 6(10): 7127–7138.
CrossRef
Google scholar
|
[58] |
Baker ES, Burnum-Johnson KE. Jacobs JM, Diamond DL, Brown RN, Ibrahim YM, et al. Advancing the high throughput identification of liver fibrosis protein signatures using multiplexed ion mobility spectrometry. Mol Cell Proteomics. 2014; 13(4): 1119–1127.
CrossRef
Google scholar
|
[59] |
Luo M, Zhang Q, Hu Y, Sun C, Sheng Y, Deng C. LGALS3BP: A Potential Plasma Biomarker Associated with Diagnosis and Prognosis in Patients with Sepsis. Infect Drug Resist. 2021; 14: 2863–2871.
CrossRef
Google scholar
|
[60] |
Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 2010; 11(2): 97–105.
CrossRef
Google scholar
|
[61] |
Conroy KP, Kitto LJ, Henderson NC. alphav integrins: key regulators of tissue fibrosis. Cell Tissue Res. 2016; 365(3): 511–519.
CrossRef
Google scholar
|
[62] |
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 2022; 21(1): 60–78.
CrossRef
Google scholar
|
[63] |
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021; 6(1): 153.
CrossRef
Google scholar
|
[64] |
Hannah WN, Jr., Torres DM, Harrison SA. Nonalcoholic Steatohepatitis and Endpoints in Clinical Trials. Gastroenterol Hepatol (N Y). 2016; 12(12): 756–763.
|
[65] |
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, et al. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol. 2022; 13: 984728.
CrossRef
Google scholar
|
/
〈 |
|
〉 |