Dysfunction of dendritic cells in tumor microenvironment and immunotherapy

Jie Chen, Yuhang Duan, Junye Che, Jianwei Zhu

Cancer Communications ›› 2024, Vol. 44 ›› Issue (09) : 1047-1070.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (09) : 1047-1070. DOI: 10.1002/cac2.12596
REVIEW

Dysfunction of dendritic cells in tumor microenvironment and immunotherapy

Author information +
History +

Abstract

Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.

Keywords

DCs immunotherapy / dendritic cells / dysfunction of DCs / tumor microenvironment

Cite this article

Download citation ▾
Jie Chen, Yuhang Duan, Junye Che, Jianwei Zhu. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Communications, 2024, 44(09): 1047‒1070 https://doi.org/10.1002/cac2.12596

References

[1]
Serbina NV, Salazar-Mather TP. Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection. Immunity. 2003; 19(1): 59–70.
CrossRef Google scholar
[2]
Anderson DA, 3rd, Dutertre CA, Ginhoux F, Murphy KM. Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol. 2021; 21(2): 101–115.
CrossRef Google scholar
[3]
Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021; 52: 101481.
CrossRef Google scholar
[4]
Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic Cells and Their Role in Immunotherapy. Front Immunol. 2020; 11: 924.
CrossRef Google scholar
[5]
Cerboni S, Marques-Ladeira S. Manel N. Virus-stimulated Dendritic Cells Elicit a T Antiviral Transcriptional Signature in Human CD4+ Lymphocytes. J Mol Biol. 2022; 434(6): 167389.
CrossRef Google scholar
[6]
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017; 45: 43–51.
CrossRef Google scholar
[7]
Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao S, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 2021; 6(1): 26.
CrossRef Google scholar
[8]
Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncol. 2023; 9(1): 112–121.
[9]
Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, et al. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol. 2023; 41(7): 1453–1465.
CrossRef Google scholar
[10]
Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003; 21: 685–711.
CrossRef Google scholar
[11]
Friedrich M, Hahn M, Michel J, Sankowski R, Kilian M, Kehl N, et al. Dysfunctional dendritic cells limit antigen-specific T cell response in glioma. Neuro Oncol. 2023; 25(2): 263–276.
CrossRef Google scholar
[12]
Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A. 2002; 99(1): 351–358.
CrossRef Google scholar
[13]
Kim CW, Kim K-D, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB reports. 2021; 54(1): 31–43.
CrossRef Google scholar
[14]
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020; 20(1): 7–24.
CrossRef Google scholar
[15]
Pinzon-Charry A, Maxwell T, Lopez JA. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol. 2005; 83(5): 451–461.
CrossRef Google scholar
[16]
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci. 2017; 74(5): 761–776.
CrossRef Google scholar
[17]
Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2019; 113: 31–37.
CrossRef Google scholar
[18]
Yin X, Zeng W, Wu B, Wang L, Wang Z, Tian H, et al. PPARalpha Inhibition Overcomes Tumor-Derived Exosomal Lipid-Induced Dendritic Cell Dysfunction. Cell Rep. 2020; 33(3): 108278.
CrossRef Google scholar
[19]
Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019; 234(5): 5700–5721.
CrossRef Google scholar
[20]
DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol. 2019; 10: 2876.
CrossRef Google scholar
[21]
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol. 2019; 86: 77–88.
CrossRef Google scholar
[22]
Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004; 4(12): 941–952.
CrossRef Google scholar
[23]
Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2019; 113: 31–37.
CrossRef Google scholar
[24]
Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lee HS, et al. The Effect of the Tumor Microenvironment and Tumor-Derived Metabolites on Dendritic Cell Function. J Cancer. 2020; 11(4): 769–75.
CrossRef Google scholar
[25]
Lewkowicz N, Mycko MP, Przygodzka P, Ćwiklińska H, Cichalewska M, Matysiak M, et al. Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10. Mucosal Immunol. 2016; 9(2): 364–378.
CrossRef Google scholar
[26]
Martin C, Espaillat MP, Santiago-Schwarz F. IL-10 restricts dendritic cell (DC) growth at the monocyte-to-monocyte-derived DC interface by disrupting anti-apoptotic and cytoprotective autophagic molecular machinery. Immunol Res. 2015; 63(1-3): 131–143.
CrossRef Google scholar
[27]
Godefroy E, Manches O, Dreno B, Hochman T, Rolnitzky L, Labarriere N, et al. Matrix metalloproteinase-2 conditions human dendritic cells to prime inflammatory T(H)2 cells via an IL-12-and OX40L-dependent pathway. Cancer Cell. 2011; 19(3): 333–346.
CrossRef Google scholar
[28]
Hope C, Emmerich PB, Papadas A, Pagenkopf A, Matkowskyj KA, Van De Hey DR, et al. Versican-Derived Matrikines Regulate Batf3-Dendritic Cell Differentiation and Promote T Cell Infiltration in Colorectal Cancer. J Immunol. 2017; 199(5): 1933–1941.
CrossRef Google scholar
[29]
Timms K, Maurice SB. Context-dependent bioactivity of versican fragments. Glycobiology. 2020; 30(6): 365–373.
CrossRef Google scholar
[30]
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, et al. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol. 2020; 11: 512.
CrossRef Google scholar
[31]
Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like Receptor 2 Activation Promotes Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Rep. 2015; 13(12): 2851–2864.
CrossRef Google scholar
[32]
Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol. 1999; 162(10): 5728–5737.
CrossRef Google scholar
[33]
Heitger A, Ladisch S. Gangliosides block antigen presentation by human monocytes. Biochim Biophys Acta. 1996; 1303(2): 161–168.
CrossRef Google scholar
[34]
Dillinger B, Ahmadi-Erber S. Lau M, Hoelzl MA, Erhart F, Juergens B, et al. IFN-γ and tumor gangliosides: Implications for the tumor microenvironment. Cell Immunol. 2018; 325: 33–40.
CrossRef Google scholar
[35]
Paolini L, Adam C, Beauvillain C, Preisser L, Blanchard S, Pignon P, et al. Lactic Acidosis Together with GM-CSF and M-CSF Induces Human Macrophages toward an Inflammatory Protumor Phenotype. Cancer Immunol Res. 2020; 8(3): 383–395.
CrossRef Google scholar
[36]
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996; 2(10): 1096–1103.
CrossRef Google scholar
[37]
Kim SH, Roszik J, Cho SN, Ogata D, Milton DR, Peng W, et al. The COX2 Effector Microsomal PGE2 Synthase 1 is a Regulator of Immunosuppression in Cutaneous Melanoma. Clin Cancer Res. 2019; 25(5): 1650–1663.
CrossRef Google scholar
[38]
Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012; 188(1): 21–28.
CrossRef Google scholar
[39]
Riera-Domingo C, Audige A, Granja S, Cheng W-C, Ho P-C. Baltazar F, et al. Immunity, Hypoxia, and Metabolism-th. Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev. 2020; 100(1): 1–102.
CrossRef Google scholar
[40]
Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015; 162(6): 1229–1241.
CrossRef Google scholar
[41]
Vuillefroy de Silly R, Dietrich PY, Walker PR. Hypoxia and antitumor CD8(+) T cells: An incompatible alliance? Oncoimmunology. 2016; 5(12): e1232236.
CrossRef Google scholar
[42]
Kim S-H, Roszik J, Grimm EA, Ekmekcioglu S. Impact of L-Arginine Metabolism on Immune Response and Anticancer Immunotherapy. Front Oncol. 2018; 8: 67.
CrossRef Google scholar
[43]
Park JE, Dutta B, Tse SW, Gupta N, Tan CF, Low JK, et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019; 38(26): 5158–5173.
CrossRef Google scholar
[44]
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995; 92(12): 5510–5514.
CrossRef Google scholar
[45]
Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget. 2019; 10(8): 883–896.
CrossRef Google scholar
[46]
Filippi I, Morena E, Aldinucci C, Carraro F, Sozzani S, Naldini A. Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J Cell Physiol. 2014; 229(12): 2067–2076.
CrossRef Google scholar
[47]
Winning S, Fandrey J. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity. J Immunol Res. 2016; 2016: 5134329.
CrossRef Google scholar
[48]
Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W, et al. Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology. 2009; 128(1 Suppl): e237–249.
CrossRef Google scholar
[49]
Ogino T, Onishi H, Suzuki H, Morisaki T, Tanaka M, Katano M. Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother. 2012; 61(3): 409–424.
CrossRef Google scholar
[50]
Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A, et al. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol. 2008; 84(6): 1472–1482.
CrossRef Google scholar
[51]
Vladykovskaya E, Sithu SD, Haberzettl P, Wickramasinghe NS, Merchant ML, Hill BG, et al. Lipid peroxidation product 4-hydroxy-trans-2-nonenal causes endothelial activation by inducing endoplasmic reticulum stress. J Biol Chem. 2012; 287(14): 11398–11409.
CrossRef Google scholar
[52]
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A. Song M, et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell. 2015; 161(7): 1527–1538.
CrossRef Google scholar
[53]
Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013; 39(3): 482–495.
CrossRef Google scholar
[54]
Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 2006; 126(1): 205–218.
CrossRef Google scholar
[55]
Liu C, Whitener RL, Lin A, Xu Y, Chen J, Savinov A, et al. Neutrophil Cytosolic Factor 1 in Dendritic Cells Promotes Autoreactive CD8(+) T Cell Activation via Cross-Presentation in Type 1 Diabetes. Front Immunol. 2019; 10: 952.
CrossRef Google scholar
[56]
Whiteside TL. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv Clin Chem. 2016; 74: 103–141.
CrossRef Google scholar
[57]
Wang C, Huang X, Wu Y, Wang J, Li F, Guo G. Tumor Cell-associated Exosomes Robustly Elicit Anti-tumor Immune Responses through Modulating Dendritic Cell Vaccines in Lung Tumor. Int J Biol Sci. 2020; 16(4): 633–643.
CrossRef Google scholar
[58]
Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017; 38(1): 522–528.
CrossRef Google scholar
[59]
Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022; 13(1): 3676.
CrossRef Google scholar
[60]
Than UTT, Le HT, Hoang DH, Nguyen X-H, Pham CT, Bui KTV, et al. Induction of Antitumor Immunity by Exosomes Isolated from Cryopreserved Cord Blood Monocyte-Derived Dendritic Cells. Int J Mol Sci. 2020; 21(5): 1834.
CrossRef Google scholar
[61]
Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 2019; 45: 1–12.
CrossRef Google scholar
[62]
Gottfried E, Kunz-Schughart LA. Ebner S, Mueller-Klieser W. Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006; 107(5): 2013–2021.
CrossRef Google scholar
[63]
Dauer P, Lengyel E. New Roles for Glycogen in Tumor Progression. Trends in Cancer. 2019; 5(7): 396–399.
CrossRef Google scholar
[64]
Bayerl F, Meiser P, Donakonda S, Hirschberger A, Lacher SB, Pedde AM, et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity. 2023; 56(6): 1341–1358.e11.
CrossRef Google scholar
[65]
Santos PM, Menk AV, Shi J, Tsung A, Delgoffe GM, Butterfield LH. Tumor-Derived alpha-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells. Cancer Immunol Res. 2019; 7(6): 1001–1012.
CrossRef Google scholar
[66]
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol. 2018; 9: 2581.
CrossRef Google scholar
[67]
Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochim Biophys Acta Rev Cancer. 2021; 1875(2): 188522.
CrossRef Google scholar
[68]
Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 2017; 8(8): 13703–13715.
CrossRef Google scholar
[69]
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017; 276(1): 97–111.
CrossRef Google scholar
[70]
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012; 13(9): 832–842.
CrossRef Google scholar
[71]
Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting CD73 to augment cancer immunotherapy. Curr Opin Pharmacol. 2020; 53: 66–76.
CrossRef Google scholar
[72]
Wennerberg E, Spada S, Rudqvist N-P, Lhuillier C, Gruber S, Chen Q, et al. CD73 Blockade Promotes Dendritic Cell Infiltration of Irradiated Tumors and Tumor Rejection. Cancer Immunol Res. 2020; 8(4): 465–478.
CrossRef Google scholar
[73]
Zhou Y, Xu J, Luo H, Meng X, Chen M, Zhu D. Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 2022; 525: 84–96.
CrossRef Google scholar
[74]
Suryawanshi A, Hussein MS, Prasad PD, Manicassamy S. Wnt Signaling Cascade in Dendritic Cells and Regulation of Anti-tumor Immunity. Front Immunol. 2020; 11: 122.
CrossRef Google scholar
[75]
Galluzzi L, Spranger S, Fuchs E, Lopez-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019; 29(1): 44–65.
CrossRef Google scholar
[76]
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, et al. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov. 2019; 9(8): 1124–1141.
CrossRef Google scholar
[77]
Goldsberry WN, Meza-Perez S. Londono AI, Katre AA, Mott BT, Roane BM, et al. Inhibiting WNT Ligand Production for Improved Immune Recognition in the Ovarian Tumor Microenvironment. Cancers (Basel). 2020; 12(3): 766.
CrossRef Google scholar
[78]
Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, et al. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun. 2019; 10(1): 1405.
CrossRef Google scholar
[79]
Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt Signaling in the Tumor Microenvironment. Adv Exp Med Biol. 2021; 1270: 107–21.
[80]
Hong Y, Manoharan I, Suryawanshi A, Shanmugam A, Swafford D, Ahmad S, et al. Deletion of LRP5 and LRP6 in dendritic cells enhances antitumor immunity. Oncoimmunology. 2016; 5(4): e1115941.
CrossRef Google scholar
[81]
Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, et al. Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer. 2021; 125(1): 28–37.
CrossRef Google scholar
[82]
Tabernero J, Van Cutsem E, Garralda E, Tai D, De Braud F, Geva R, et al. A Phase Ib/II Study of WNT974 + Encorafenib + Cetuximab in Patients With BRAF V600E-Mutant KRAS Wild-Type Metastatic Colorectal Cancer. Oncologist. 2023; 28(3): 230–238.
CrossRef Google scholar
[83]
Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol. 2017; 174(24): 4637–4650.
CrossRef Google scholar
[84]
Wall JA, Klempner SJ, Arend RC. The anti-DKK1 antibody DKN-01 as an immunomodulatory combination partner for the treatment of cancer. Expert Opin Investig Drugs. 2020; 29(7): 639–644.
CrossRef Google scholar
[85]
Goyal L, Sirard C, Schrag M, Kagey MH, Eads JR, Stein S, et al. Phase I and Biomarker Study of the Wnt Pathway Modulator DKN-01 in Combination with Gemcitabine/Cisplatin in Advanced Biliary Tract Cancer. Clin Cancer Res. 2020; 26(23): 6158–6167.
CrossRef Google scholar
[86]
Klempner SJ, Bendell JC, Villaflor VM, Tenner LL, Stein SM, Rottman JB, et al. Safety, Efficacy, and Biomarker Results from a Phase Ib Study of the Anti-DKK1 Antibody DKN-01 in Combination with Pembrolizumab in Advanced Esophagogastric Cancers. Mol Cancer Ther. 2021; 20(11): 2240–2249.
CrossRef Google scholar
[87]
Arend R, Dholakia J, Castro C, Matulonis U, Hamilton E, Jackson CG, et al. DKK1 is a predictive biomarker for response to DKN-01: Results of a phase 2 basket study in women with recurrent endometrial carcinoma. Gynecol Oncol. 2023; 172: 82–91.
CrossRef Google scholar
[88]
Iyer SP, Beck JT, Stewart AK, Shah J, Kelly KR, Isaacs R, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol. 2014; 167(3): 366–375.
CrossRef Google scholar
[89]
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, et al. Drug Discovery of DKK1 Inhibitors. Front Pharmacol. 2022; 13: 847387.
CrossRef Google scholar
[90]
Danieau G, Morice S, Renault S, Brion R, Biteau K, Amiaud J, et al. ICG-001, an Inhibitor of the β-Catenin and cAMP Response Element-Binding Protein Dependent Gene Transcription, Decreases Proliferation but Enhances Migration of Osteosarcoma Cells. Pharmaceuticals (Basel). 2021; 14(5): 421.
CrossRef Google scholar
[91]
Kimura K, Ikoma A, Shibakawa M, Shimoda S, Harada K, Saio M, et al. Safety, Tolerability, and Preliminary Efficacy of the Anti-Fibrotic Small Molecule PRI-724, a CBP/beta-Catenin Inhibitor, in Patients with Hepatitis C Virus-related Cirrhosis: A Single-Center, Open-Label, Dose Escalation Phase 1 Trial. EBioMedicine. 2017; 23: 79–87.
CrossRef Google scholar
[92]
Kimura K, Kanto T, Shimoda S, Harada K, Kimura M, Nishikawa K, et al. Safety, tolerability, and anti-fibroti. efficacy of the CBP/beta-catenin inhibitor PRI-724 in patients with hepatitis C and B virus-induced liver cirrhosis: An investigator-initiated, open-label, non-randomised, multicentre, phase 1/2a study. EBioMedicine. 2022; 80: 104069.
CrossRef Google scholar
[93]
Kaochar S, Dong J, Torres M, Rajapakshe K, Nikolos F, Davis CM, et al. ICG-001 Exerts Potent Anticancer Activity Against Uveal Melanoma Cells. Invest Ophthalmol Vis Sci. 2018; 59(1): 132–143.
CrossRef Google scholar
[94]
Plummer R, Dua D, Cresti N, Drew Y, Stephens P, Foegh M, et al. First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor. Br J Cancer. 2020; 123(4): 525–533.
CrossRef Google scholar
[95]
Zhang X, Dong N, Hu X. Wnt/beta-catenin Signaling Inhibitors. Curr Top Med Chem. 2023; 23(10): 880–896.
CrossRef Google scholar
[96]
Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochim Biophys Acta Rev Cancer. 2021; 1875(2): 188522.
CrossRef Google scholar
[97]
Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019; 566(7743): 270–274.
CrossRef Google scholar
[98]
Chen X-Y, Zhang J, Zhu J-S. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019; 18(1): 103.
CrossRef Google scholar
[99]
Kim CW, Kim KD, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep. 2021; 54(1): 31–43.
CrossRef Google scholar
[100]
Seya T, Takeda Y, Takashima K, Yoshida S, Azuma M, Matsumoto M. Adjuvant immunotherapy for cancer: both dendritic cell-priming and check-point inhibitor blockade are required for immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci. 2018; 94(3): 153–160.
CrossRef Google scholar
[101]
Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines. 2018; 17(3): 207–215.
CrossRef Google scholar
[102]
Luchner M, Reinke S, Milicic A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics. 2021; 13(2): 142.
CrossRef Google scholar
[103]
Aurisicchio L, Salvatori E, Lione L, Bandini S, Pallocca M, Maggio R, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res. 2019; 38(1): 78.
CrossRef Google scholar
[104]
Di S, Zhou M, Pan Z, Sun R, Chen M, Jiang H, et al. Combined Adjuvant of Poly I:C Improves Antitumor Effects of CAR-T Cells. Front Oncol. 2019; 9: 241.
CrossRef Google scholar
[105]
Antonios JP, Everson RG, Mochizuki A, Khattab S, Soto H, Romiyo P, et al. Adjuvant TLR-3 administration enhances proinflammatory immune responses and is associated with extended survival in glioblastoma patients treated with dendritic cell vaccination [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2019 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2020; 8(3 Suppl):Abstract nr PR13.
CrossRef Google scholar
[106]
Seya T, Takeda Y, Matsumoto M. A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Adv Drug Deliv Rev. 2019; 147: 37–43.
CrossRef Google scholar
[107]
Matsumoto M, Takeda Y, Tatematsu M, Seya T. Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy. Front Immunol. 2017; 8: 1897.
CrossRef Google scholar
[108]
Cox MC, Lapenta C, Santini SM. Advances and perspectives of dendritic cell-based active immunotherapies in follicular lymphoma. Cancer Immunol Immunother. 2020; 69(6): 913–925.
CrossRef Google scholar
[109]
Hug BA, Matheny CJ, Burns O, Struemper H, Wang X, Washburn ML. Safety, Pharmacokinetics, and Pharmacodynamics of the TLR4 Agonist GSK1795091 in Healthy Individuals: Results from a Randomized, Double-blind, Placebo-controlled, Ascending Dose Study. Clin Ther. 2020; 42(8): 1519–1534.e33.
CrossRef Google scholar
[110]
Tsitoura D, Ambery C, Price M, Powley W, Garthside S, Biggadike K, et al. Early clinical evaluation of the intranasal TLR7 agonist GSK2245035: Use of translational biomarkers to guide dosing and confirm target engagement. Clin Pharmacol Ther. 2015; 98(4): 369–380.
CrossRef Google scholar
[111]
Siddall H, Quint D, Pandya H, Powley W, Shabbir S, Hohlfeld JM, et al. Intranasal GSK2245035, a Toll-lik. receptor 7 agonist, does not attenuate the allergen-induced asthmatic response in a randomized, double-blind, placebo-controlled experimenta. medicine study. PLoS One. 2020; 15(11): e0240964.
CrossRef Google scholar
[112]
Boni C, Vecchi A, Rossi M, Laccabue D, Giuberti T, Alfieri A, et al. TLR7 Agonist Increases Responses of Hepatitis B Virus-Specific T Cells and Natural Killer Cells in Patients With Chronic Hepatitis B Treated With Nucleos(T)Ide Analogues. Gastroenterology. 2018; 154(6): 1764–1777.e7.
CrossRef Google scholar
[113]
Janssen HLA, Brunetto MR, Kim YJ, Ferrari C, Massetto B, Nguyen AH, et al. Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis B. J Hepatol. 2018; 68(3): 431–440.
CrossRef Google scholar
[114]
Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, et al. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity. PLoS One. 2016; 11(2): e0148764.
CrossRef Google scholar
[115]
Kim YH, Gratzinger D, Harrison C, Brody JD, Czerwinski DK, Ai WZ, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood. 2012; 119(2): 355–363.
CrossRef Google scholar
[116]
Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010; 28(28): 4324–4332.
CrossRef Google scholar
[117]
Offersen R, Melchjorsen J, Paludan SR, Ostergaard L, Tolstrup M, Sogaard OS. TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults. Hum Vaccin Immunother. 2012; 8(8): 1042–1047.
CrossRef Google scholar
[118]
Sogaard OS, Lohse N, Harboe ZB, Offersen R, Bukh AR, Davis HL, et al. Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clin Infect Dis. 2010; 51(1): 42–50.
CrossRef Google scholar
[119]
Vibholm LK, Konrad CV, Schleimann MH, Frattari G, Winckelmann A, Klastrup V, et al. Effects of 24-week Toll-like receptor 9 agonist treatment in HIV type 1+ individuals. AIDS. 2019; 33(8): 1315–1325.
CrossRef Google scholar
[120]
Vibholm L, Schleimann MH, Hojen JF, Benfield T, Offersen R, Rasmussen K, et al. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection. Clin Infect Dis. 2017; 64(12): 1686–1695.
CrossRef Google scholar
[121]
Santos PM, Butterfield LH. Dendritic Cell-Based Cancer Vaccines. J Immunol. 2018; 200(2): 443–449.
CrossRef Google scholar
[122]
Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol. 2017; 38(8): 577–593.
CrossRef Google scholar
[123]
Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood. 2002; 99(5): 1517–1526.
CrossRef Google scholar
[124]
Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996; 2(1): 52–58.
CrossRef Google scholar
[125]
Santos PM, Butterfield LH. Dendritic Cell-Based Cancer Vaccines. J Immunol. 2018; 200(2): 443–449.
CrossRef Google scholar
[126]
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363(5): 411–422.
CrossRef Google scholar
[127]
Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2018; 14(10): 907–917.
CrossRef Google scholar
[128]
Di Lorenzo G, Ferro M, Buonerba C. Sipuleucel-T (Provenge(R)) for castration-resistant prostate cancer. BJU Int. 2012; 110(2 Pt 2): E99–E104.
CrossRef Google scholar
[129]
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol. 2021; 12: 641307.
CrossRef Google scholar
[130]
Butterfield LH. Dendritic cells in cancer immunotherapy clinical trials: are we making progress? Front Immunol. 2013; 4: 454.
CrossRef Google scholar
[131]
Schwaab T, Schwarzer A, Wolf B, Crocenzi TS, Seigne JD, Crosby NA, et al. Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (Interleukin 2) and IFN-alpha2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res. 2009; 15(15): 4986–4992.
CrossRef Google scholar
[132]
Frank MO, Kaufman J, Parveen S, Blachere NE, Orange DE, Darnell RB. Dendritic cell vaccines containing lymphocytes produce improved immunogenicity in patients with cancer. J Transl Med. 2014; 12: 338.
CrossRef Google scholar
[133]
De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, et al. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer. 2020; 8(1): e000329.
CrossRef Google scholar
[134]
Ernstoff MS, Crocenzi TS, Seigne JD, Crosby NA, Cole BF, Fisher JL, et al. Developing a rational tumor vaccine therapy for renal cell carcinoma: immune yin and yang. Clin Cancer Res. 2007; 13(2 Pt 2): 733s–740s.
CrossRef Google scholar
[135]
Tanyi JL, Chiang CL, Chiffelle J, Thierry AC, Baumgartener P, Huber F, et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Vaccines. 2021; 6(1): 36.
CrossRef Google scholar
[136]
Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, et al. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother. 2012; 35(1): 54–65.
CrossRef Google scholar
[137]
Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012; 118(17): 4354–4362.
CrossRef Google scholar
[138]
Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, et al. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020; 69(7): 1375–1387.
CrossRef Google scholar
[139]
Butterfield LH, Vujanovic L, Santos PM, Maurer DM, Gambotto A, Lohr J, et al. Multiple antigen-engineered DC vaccines with or without IFNalpha to promote antitumor immunity in melanoma. J Immunother Cancer. 2019; 7(1): 113.
CrossRef Google scholar
[140]
de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res. 2003; 9(14): 5091–5100.
[141]
de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol. 2005; 23(24): 5779–5787.
CrossRef Google scholar
[142]
Wang D, Zhang B, Gao H, Ding G, Wu Q, Zhang J, et al. Clinical research of genetically modified dendritic cells in combination with cytokine-induced killer cell treatment in advanced renal cancer. BMC Cancer. 2014; 14: 251.
CrossRef Google scholar
[143]
Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res. 2014; 20(9): 2433–2444.
CrossRef Google scholar
[144]
Carreno BM, Magrini V, Becker-Hapak M. Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015; 348(6236): 803–808.
CrossRef Google scholar
[145]
Orr B, Mahdi H, Fang Y, Strange M, Uygun I, Rana M, et al. Phase I Trial Combining Chemokine-Targeting with Loco-Regional Chemoimmunotherapy for Recurrent, Platinum-Sensitive Ovaria. Cancer Shows Induction of CXCR3 Ligands and Markers of Type 1 Immunity. Clin Cancer Res. 2022; 28(10): 2038–2049.
CrossRef Google scholar
[146]
Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcao A, et al. Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics. 2020; 12(2): 158.
CrossRef Google scholar
[147]
Kroczek AL, Hartung E, Gurka S, Becker M, Reeg N, Mages HW, et al. Structure-Function Relationship of XCL1 Used for in vivo Targeting of Antigen Into XCR1(+) Dendritic Cells. Front Immunol. 2018; 9: 2806.
CrossRef Google scholar
[148]
Bachem A, Hartung E, Güttler S, Mora A, Zhou X, Hegemann A, et al. Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation. Front Immunol. 2012; 3: 214.
CrossRef Google scholar
[149]
Audsley KM, McDonnell AM, Waithman J. Cross-Presenting XCR1(+) Dendritic Cells as Targets for Cancer Immunotherapy. Cells. 2020; 9(3): 565.
CrossRef Google scholar
[150]
Balan S, Dalod M. In Vitro Generation of Human XCR1(+) Dendritic Cells from CD34(+) Hematopoietic Progenitors. Methods Mol Biol. 2016; 1423: 19–37.
CrossRef Google scholar
[151]
Chen F, Zou Z, Du J, Su S, Shao J, Meng F, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest. 2019; 129(5): 2056–2070.
CrossRef Google scholar
[152]
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015; 348(6230): 69–74.
CrossRef Google scholar
[153]
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017; 547(7662): 217–221.
CrossRef Google scholar
[154]
Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer. 2021; 20(1): 69.
CrossRef Google scholar
[155]
Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020; 130(11): 5976–5988.
CrossRef Google scholar
[156]
Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi L, et al. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol Immunother. 2020; 69(1): 135–145.
CrossRef Google scholar
[157]
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019; 565(7738): 234–239.
[158]
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019; 18(1): 128.
CrossRef Google scholar
[159]
Benteyn D, Van Nuffel AM, Wilgenhof S, Corthals J, Heirman C, Neyns B, et al. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL). Biomed Res Int. 2013; 2013: 976383.
CrossRef Google scholar
[160]
Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther. 2008; 16(6): 1170–1180.
CrossRef Google scholar
[161]
Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C, et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol. 2013; 24(10): 2686–2693.
CrossRef Google scholar
[162]
Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, et al. Lentivirus-induced ‘Smart’ dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther. 2015; 22(9): 707–720.
CrossRef Google scholar
[163]
Carreno BM, Magrini V, Becker-Hapak M. Kaabinejadian S, Hundal J, Petti AA, et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015; 348(6236): 803–808.
CrossRef Google scholar
[164]
Wi TI, Byeon Y, Won JE, Lee JM, Kang TH, Lee JW, et al. Selective Tumor-Specific Antigen Delivery to Dendritic Cells Using Mannose-Labeled Poly(d, l-lactide-co-glycolide) Nanoparticles for Cancer Immunotherapy. J Biomed Nanotechnol. 2020; 16(2): 201–211.
CrossRef Google scholar
[165]
Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res. 2016; 35(1): 168.
CrossRef Google scholar
[166]
Tateshita N, Miura N, Tanaka H, Masuda T, Ohtsuki S, Tange K, et al. Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. J Control Release. 2019; 310: 36–46.
CrossRef Google scholar
[167]
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021; 20(1): 33.
CrossRef Google scholar
[168]
Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019; 37(10): 1174–1185.
CrossRef Google scholar
[169]
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines—Recent Breakthroughs and Encouraging Clinical Results. Front Immunol. 2019; 10: 766.
CrossRef Google scholar
[170]
Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015; 23: 32–38.
CrossRef Google scholar
[171]
Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020; 12(534): eaav7431.
CrossRef Google scholar
[172]
Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun. 2020; 11(1): 4835.
CrossRef Google scholar
[173]
Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020; 38(5): 685–700.e8.
CrossRef Google scholar
[174]
Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci Immunol. 2023; 8(79): eabn6612.
CrossRef Google scholar
[175]
Vonderheide RH. CD40 Agonist Antibodies in Cancer Immunotherapy. Annu Rev Med. 2020; 71(1): 47–58.
CrossRef Google scholar
[176]
Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007; 13(4): 1083–1088.
CrossRef Google scholar
[177]
Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol. 2004; 22: 307–328.
CrossRef Google scholar
[178]
Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, et al. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell. 2020; 37(3): 289–307.e9.
CrossRef Google scholar
[179]
Vonderheide RH, Bajor DL, Winograd R, Evans RA, Bayne LJ, Beatty GL. CD40 immunotherapy for pancreatic cancer. Cancer Immunol Immunother. 2013; 62(5): 949–954.
CrossRef Google scholar
[180]
Salomon R, Rotem H, Katzenelenbogen Y, Weiner A, Cohen Saban N, Feferman T, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat Cancer. 2022; 3(3): 287–302.
CrossRef Google scholar
[181]
Schmitt S, Tahk S, Lohner A, Hänel G, Maiser A, Hauke M, et al. Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells. Front Immunol. 2020; 11:602802-.
CrossRef Google scholar
[182]
Liu L, Chen J, Bae J, Li H, Sun Z, Moore C, et al. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat Biomed Eng. 2021; 5(11): 1261–1273.
CrossRef Google scholar
[183]
Fan M, Liu H, Yan H, Che R, Jin Y, Yang X, et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials. 2022; 282: 121424.
CrossRef Google scholar
[184]
Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood. 2022; 140(10): 1104–1118.
CrossRef Google scholar
[185]
Dahling S, Mansilla AM, Knopper K, Grafen A, Utzschneider DT, Ugur M, et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity. 2022; 55(4): 656–670.e8.
CrossRef Google scholar
[186]
Pan Z, Chen J, Xiao X, Xie Y, Jiang H, Zhang B, et al. Characterization of a novel bispecific antibody targeting tissue factor-positive tumors with T cell engagement. Acta Pharm Sin B. 2022; 12(4): 1928–1942.
CrossRef Google scholar
[187]
Chen J, Pan Z, Han L, Zhou Y, Zong H, Wang L, et al. A Novel Bispecific Antibody Targeting CD3 and Lewis Y with Potent Therapeutic Efficacy against Gastric Cancer. Biomedicines. 2021; 9(8): 1059.
CrossRef Google scholar
[188]
Sun R, Zhou Y, Han L, Pan Z, Chen J, Zong H, et al. A Rational Designed Novel Bispecific Antibody for the Treatment of GBM. Biomedicines. 2021; 9(6): 640.
CrossRef Google scholar
[189]
Sung E, Ko M, Won JY, Jo Y, Park E, Kim H, et al. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation. Mol Ther. 2022; 30(8): 2800–2816.
CrossRef Google scholar
[190]
Capelletti M, Liegel J, Themeli M, Mutis T, Stroopinsky D, Orr S, et al. Potent Synergy between Combination of Chimeric Antigen Receptor (CAR) Therapy Targeting CD19 in Conjunction with Dendritic Cell (DC)/Tumor Fusion Vaccine in Hematological Malignancies. Biol Blood Marrow Transplant. 2020; 26(3): S42–S43.
CrossRef Google scholar
[191]
Lai J, Mardiana S, House IG, Sek K, Henderson MA, Giuffrida L, et al. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat Immunol. 2020; 21(8): 914–926.
CrossRef Google scholar
[192]
Bulgarelli J, Tazzari M, Granato AM, Ridolfi L, Maiocchi S, de Rosa F, et al. Dendritic Cell Vaccination in Metastatic Melanoma Turns “Non-T Cell Inflamed” Into “T-Cell Inflamed” Tumors. Front Immunol. 2019; 10: 2353.
CrossRef Google scholar
[193]
Deng J, Xu W, Lei S, Li W, Li Q, Li K, et al. Activated Natural Killer Cells-Dependent Dendritic Cells Recruitment and Maturation by Responsive Nanogels for Targeting Pancreatic Cancer Immunotherapy. Small. 2022; 18(44): e2203114.
CrossRef Google scholar
[194]
Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S, et al. Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity. 2022; 55(2): 308–323.e9.
CrossRef Google scholar
[195]
Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021; 52: 101481.
CrossRef Google scholar
[196]
Wang C, Barnoud C, Cenerenti M, Sun M, Caffa I, Kizil B, et al. Dendritic cells direct circadian anti-tumour immune responses. Nature. 2023; 614(7946): 136–143.
CrossRef Google scholar
[197]
Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, et al. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci. 2020; 254: 117580.
CrossRef Google scholar
[198]
Wang S, Wang X, Zhou X, Lyerly HK, Morse MA, Ren J. DC-CIK as a widely applicable cancer immunotherapy. Expert Opin Biol Ther. 2020; 20(6): 601–607.
CrossRef Google scholar
[199]
Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother. 2020; 126: 110046.
CrossRef Google scholar
[200]
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012; 12(4): 265–277.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.
PDF

Accesses

Citations

Detail

Sections
Recommended

/