Dual inhibition of sirtuins 1 and 2: reprogramming metabolic energy dynamics in chronic myeloid leukemia as an immunogenic anticancer strategy

Michael Schnekenburger, Anne Lorant, Sruthi Reddy Gajulapalli, Ridhika Rajora, Jin-Young Lee, Aloran Mazumder, Haeun Yang, Christo Christov, Hyoung Jin Kang, Bernard Pirotte, Marc Diederich

Cancer Communications ›› 2024, Vol. 44 ›› Issue (08) : 915-920.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (08) : 915-920. DOI: 10.1002/cac2.12590
LETTER TO THE JOURNAL

Dual inhibition of sirtuins 1 and 2: reprogramming metabolic energy dynamics in chronic myeloid leukemia as an immunogenic anticancer strategy

Author information +
History +

Cite this article

Download citation ▾
Michael Schnekenburger, Anne Lorant, Sruthi Reddy Gajulapalli, Ridhika Rajora, Jin-Young Lee, Aloran Mazumder, Haeun Yang, Christo Christov, Hyoung Jin Kang, Bernard Pirotte, Marc Diederich. Dual inhibition of sirtuins 1 and 2: reprogramming metabolic energy dynamics in chronic myeloid leukemia as an immunogenic anticancer strategy. Cancer Communications, 2024, 44(08): 915‒920 https://doi.org/10.1002/cac2.12590

References

[1]
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol. 2018; 51: 180–197.
CrossRef Google scholar
[2]
Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017; 23(10): 1234–1240.
CrossRef Google scholar
[3]
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022; 7(1): 402.
CrossRef Google scholar
[4]
Carafa V, Altucci L, Nebbioso A. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Front Pharmacol. 2019; 10: 38.
CrossRef Google scholar
[5]
Chen G, Huang P, Hu C. The role of SIRT2 in cancer: A novel therapeutic target. Int J Cancer. 2020; 147(12): 3297–3304.
CrossRef Google scholar
[6]
Schnekenburger M, Goffin E, Lee JY, Jang JY, Mazumder A, Ji S, et al. Discovery and Characterization of R/S-N-3-Cyanophenyl-N’-(6-tert-butoxycarbonylamino-3, 4-dihydro-2, 2-dimethyl-2H-1-benzopyran-4-yl)urea, a New Histone Deacetylase Class III Inhibitor Exerting Antiproliferative Activity against Cancer Cell Lines. J Med Chem. 2017; 60(11): 4714–4733.
[7]
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2022; 36(1): 1–12.
CrossRef Google scholar
[8]
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022; 22(1): 45–64.
CrossRef Google scholar
[9]
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022; 23(4): 487–500.
CrossRef Google scholar
[10]
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020; 11(11): 1013.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.
PDF

Accesses

Citations

Detail

Sections
Recommended

/