Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies

Wenyue Sun, Shunfeng Hu, Xin Wang

Cancer Communications ›› 2024, Vol. 44 ›› Issue (09) : 1071-1097.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (09) : 1071-1097. DOI: 10.1002/cac2.12587
REVIEW

Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies

Author information +
History +

Abstract

Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.

Keywords

Immune checkpoint / hematological malignancies / biomarkers / therapeutic targets / drug resistance

Cite this article

Download citation ▾
Wenyue Sun, Shunfeng Hu, Xin Wang. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Communications, 2024, 44(09): 1071‒1097 https://doi.org/10.1002/cac2.12587

References

[1]
Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv Exp Med Biol. 2020; 1248: 201-26.
CrossRef Google scholar
[2]
Wartewig T, Daniels J, Schulz M, Hameister E, Joshi A, Park J, et al. PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma. Nat Cancer. 2023; 4(10): 1508-25.
CrossRef Google scholar
[3]
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015; 27(4): 450-61.
CrossRef Google scholar
[4]
Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020; 11(1): 3801.
CrossRef Google scholar
[5]
Korman AJ, Garrett-Thomson SC. Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov. 2022; 21(7): 509-28.
CrossRef Google scholar
[6]
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015; 372(26): 2521-32.
CrossRef Google scholar
[7]
Larkin J, Chiarion-Sileni V. Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2019; 381(16): 1535-46.
CrossRef Google scholar
[8]
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020; 12(3): 738.
CrossRef Google scholar
[9]
Chen R, Zinzani PL, Lee HJ, Armand P, Johnson NA, Brice P, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood. 2019; 134(14): 1144-53.
CrossRef Google scholar
[10]
Geoerger B, Kang HJ, Yalon-Oren M. Marshall LV, Vezina C, Pappo A, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020; 21(1): 121-33.
CrossRef Google scholar
[11]
Cuccaro A, Bellesi S, Galli E, Zangrilli I, Corrente F, Cupelli E, et al. PD-L1 expression in peripheral blood granulocytes at diagnosis as prognostic factor in classical Hodgkin lymphoma. J Leukoc Biol. 2022; 112(3): 539-45.
CrossRef Google scholar
[12]
Onishi A, Fuji S, Kitano S, Maeshima AM, Tajima K, Yamaguchi J, et al. Prognostic implication of CTLA-4, PD-1, and PD-L. expression in aggressive adult T-cell leukemia-lymphoma. Ann Hematol. 2022; 101(4): 799-810.
CrossRef Google scholar
[13]
He HX, Gao Y, Fu JC, Zhou QH, Wang XX, Bai B, et al. VISTA and PD-L1 synergistically predict poor prognosis in patients with extranodal natural killer/T-cell lymphoma. Oncoimmunology. 2021; 10(1): 1907059.
CrossRef Google scholar
[14]
Keane C, Law SC, Gould C, Birch S, Sabdia MB, Merida de Long L, et al. LAG3: a novel immune checkpoint expressed by multiple lymphocyte subsets in diffuse large B-cell lymphoma. Blood Adv. 2020; 4(7): 1367-77.
CrossRef Google scholar
[15]
Schoenfeld AJ, Hellmann MD. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell. 2020; 37(4): 443-55.
CrossRef Google scholar
[16]
Veldman J, Visser L, Berg AVD, Diepstra A. Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treat Rev. 2020; 82: 101931.
CrossRef Google scholar
[17]
Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016; 127(11): 1449-58.
CrossRef Google scholar
[18]
Jing Z, Wang S, Xu K, Tang Q, Li W, Zheng W, et al. A Potent Micron Neoantigen Tumor Vaccine GP-Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. Adv Sci (Weinh). 2022; 9(24): e2201496.
CrossRef Google scholar
[19]
Herrmann M, Krupka C, Deiser K, Brauchle B, Marcinek A, Ogrinc Wagner A, et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018; 132(23): 2484-94.
CrossRef Google scholar
[20]
Yong SB, Kim J, Chung JY, Ra S, Kim SS, Kim YH. Heme Oxygenase 1-Targeted Hybrid Nanoparticle for Chemo-and Immuno-Combination Therapy in Acute Myelogenous Leukemia. Adv Sci (Weinh). 2020; 7(13): 2000487.
CrossRef Google scholar
[21]
Abusarah J, Khodayarian F, El-Hachem N. Salame N, Olivier M, Balood M, et al. Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Rep Med. 2021; 2(12): 100455.
CrossRef Google scholar
[22]
Kornacker M, Moldenhauer G, Herbst M, Weilguni E, Tita-Nwa F. Harter C, et al. Cytokine-induced killer cells against autologous CLL: direct cytotoxic effects and induction of immune accessory molecules by interferon-gamma. Int J Cancer. 2006; 119(6): 1377-82.
CrossRef Google scholar
[23]
Deuse T, Hu X, Agbor-Enoh S. Jang MK, Alawi M, Saygi C, et al. The SIRPα-CD47 immune checkpoint in NK cells. J Exp Med. 2021; 218(3): e20200839.
CrossRef Google scholar
[24]
Bauer V, Ahmetlić F, Hömberg N, Geishauser A, Röcken M, Mocikat R. Immune checkpoint blockade impairs immunosuppressive mechanisms of regulatory T cells in B-cell lymphoma. Transl Oncol. 2021; 14(9): 101170.
CrossRef Google scholar
[25]
Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun. 2020; 11(1): 4835.
CrossRef Google scholar
[26]
Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975; 5(2): 112-7.
CrossRef Google scholar
[27]
Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975; 16(2): 230-9.
CrossRef Google scholar
[28]
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol. 2020; 11: 167.
CrossRef Google scholar
[29]
Liu JQ, Talebian F, Wu L, Liu Z, Li MS, Wu L, et al. A Critical Role for CD200R Signaling in Limiting the Growth and Metastasis of CD200+ Melanoma. J Immunol. 2016; 197(4): 1489-97.
CrossRef Google scholar
[30]
Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006; 108(13): 4194-7.
CrossRef Google scholar
[31]
Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia. 2007; 21(3): 566-8.
CrossRef Google scholar
[32]
Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia. 2011; 25(5): 792-9.
CrossRef Google scholar
[33]
Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol. 2018; 96(1): 21-33.
CrossRef Google scholar
[34]
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008; 133(5): 775-87.
CrossRef Google scholar
[35]
Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019; 110(7): 2080-9.
CrossRef Google scholar
[36]
Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017; 27(1): 109-18.
CrossRef Google scholar
[37]
Dehghani M, Kalani M, Golmoghaddam H, Ramzi M, Arandi N. Aberrant peripheral blood CD4(+) CD25(+) FOXP3(+) regulatory T cells/T helper-17 number is associated with the outcome of patients with lymphoma. Cancer Immunol Immunother. 2020; 69(9): 1917-28.
CrossRef Google scholar
[38]
Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA. Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood. 2008; 111(11): 5359-70.
CrossRef Google scholar
[39]
Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic Cells and Their Role in Immunotherapy. Front Immunol. 2020; 11: 924.
CrossRef Google scholar
[40]
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020; 20(1): 7-24.
CrossRef Google scholar
[41]
Böttcher JP, Reis e Sousa C. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018; 4(11): 784-92.
CrossRef Google scholar
[42]
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010; 207(10): 2187-94.
CrossRef Google scholar
[43]
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018; 131(1): 58-67.
CrossRef Google scholar
[44]
Abdou AG, Asaad NY, Loay I, Shabaan M, Badr N. The prognostic role of tumor-associated macrophages and dendritic cells in classic Hodgkin’s lymphoma. J Environ Pathol Toxicol Oncol. 2013; 32(4): 289-305.
CrossRef Google scholar
[45]
Huang S, Liao M, Chen S, Zhang P, Xu F, Zhang H. Immune signatures of CD4 and CD68 predicts disease progression in cutaneous T cell lymphoma. Am J Transl Res. 2022; 14(5): 3037-51.
[46]
Zalmaï L, Viailly PJ, Biichle S, Cheok M, Soret L, Angelot-Delettre F. et al. Plasmacytoid dendritic cells proliferation associated with acute myeloid leukemia: phenotype profile and mutation landscape. Haematologica. 2021; 106(12): 3056-66.
CrossRef Google scholar
[47]
Chao MP, Takimoto CH, Feng DD, McKenna K, Gip P, Liu J, et al. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front Oncol. 2019; 9: 1380.
CrossRef Google scholar
[48]
Poels LG, Peters D, van Megen Y, Vooijs GP, Verheyen RN, Willemen A, et al. Monoclonal antibody against human ovarian tumor-associated antigens. J Natl Cancer Inst. 1986; 76(5): 781-91.
[49]
Yang K, Xu J, Liu Q, Li J, Xi Y. Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathol Res Pract. 2019; 215(2): 265-71.
CrossRef Google scholar
[50]
Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, Jr., et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009; 138(2): 286-99.
CrossRef Google scholar
[51]
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-dept. review. Blood Rev. 2018; 32(6): 480-9.
CrossRef Google scholar
[52]
Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2013; 110(8): 3011-6.
CrossRef Google scholar
[53]
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2): 271-85.
CrossRef Google scholar
[54]
Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One. 2015; 10(9): e0137345.
CrossRef Google scholar
[55]
Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M, et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood. 2007; 110(1): 201-10.
CrossRef Google scholar
[56]
Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016; 54: 112-9.
CrossRef Google scholar
[57]
Stoll A, Bruns H, Fuchs M, Völkl S, Nimmerjahn F, Kunz M, et al. CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia. 2021; 35(12): 3482-96.
CrossRef Google scholar
[58]
Shi Y, Liu Y, Huang J, Luo Z, Guo X, Jiang M, et al. Optimized mobilization of MHC class I-and II-restricted immunity by dendritic cell vaccine potentiates cancer therapy. Theranostics. 2022; 12(7): 3488-502.
CrossRef Google scholar
[59]
Fløisand Y, Remberger M, Bigalke I, Josefsen D, Vålerhaugen H, Inderberg EM, et al. WT1 and PRAME RNA-loaded dendritic cell vaccine as maintenance therapy in de novo AML after intensive induction chemotherapy. Leukemia. 2023; 37(9): 1842-9.
CrossRef Google scholar
[60]
Zhao H, Cai S, Xiao Y, Xia M, Chen H, Xie Z, et al. Expression and prognostic significance of the PD-1/PD-L1 pathway in AIDS-related non-Hodgkin lymphoma. Cancer Med. 2024; 13(7): e7195.
[61]
Ruan Y, Wang J, Zhang Q, Wang H, Li C, Xu X, et al. Clinical implications of aberrant PD-1 expression for acute leukemia prognosis. Eur J Med Res. 2023; 28(1): 383.
CrossRef Google scholar
[62]
Wang L, Wang H, Chen H, Wang WD, Chen XQ, Geng QR, et al. Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget. 2015; 6(38): 41228-36.
CrossRef Google scholar
[63]
Beck Enemark M, Monrad I, Madsen C, Lystlund Lauridsen K, Honoré B, Plesner TL, et al. PD-1 Expression in Pre-Treatment Follicular Lymphoma Predicts the Risk of Subsequent High-Grade Transformation. Onco Targets Ther. 2021; 14: 481-9.
CrossRef Google scholar
[64]
Richter S, Böttcher M, Stoll A, Zeremski V, Völkl S, Mackensen A, et al. Increased PD-1 Expression on Circulating T Cells Correlates with Inferior Outcome after Autologous Stem Cell Transplantation. Transplant Cell Ther. 2024; 30(6): 628.e1-.e9.
CrossRef Google scholar
[65]
Phillips D, Matusiak M, Gutierrez BR, Bhate SS, Barlow GL, Jiang S, et al. Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat Commun. 2021; 12(1): 6726.
CrossRef Google scholar
[66]
Kulikowska de Nałęcz A, Ciszak L, Usnarska-Zubkiewicz L. Pawlak E, Frydecka I, Szmyrka M, et al. Inappropriate Expression of PD-1 and CTLA-4 Checkpoints in Myeloma Patients Is More Pronounced at Diagnosis: Implications for Time to Progression and Response to Therapeutic Checkpoint Inhibitors. Int J Mol Sci. 2023; 24(6): 5730.
CrossRef Google scholar
[67]
Aref S, El Agdar M, El Sebaie A, Abouzeid T, Sabry M, Ibrahim L. Prognostic Value of CD200 Expression and Soluble CTLA-4 Concentrations in Intermediate and High-Risk Myelodysplastic Syndrome Patients. Asian Pac J Cancer Prev. 2020; 21(8): 2225-30.
CrossRef Google scholar
[68]
Radwan SM, Elleboudy NS, Nabih NA, Kamal AM. The immune checkpoints Cytotoxic T lymphocyte antigen-4 and Lymphocyte activation gene-3 expression is up-regulated in acute myeloid leukemia. Hla. 2020; 96(1): 3-12.
CrossRef Google scholar
[69]
Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009; 15(20): 6446-53.
CrossRef Google scholar
[70]
Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for Patients with Relapse after Allogeneic Transplantation. N Engl J Med. 2016; 375(2): 143-53.
CrossRef Google scholar
[71]
Takeuchi M, Miyoshi H, Nakashima K, Kawamoto K, Yamada K, Yanagida E, et al. Comprehensive immunohistochemical analysis of immune checkpoint molecules in adult T cell leukemia/lymphoma. Ann Hematol. 2020; 99(5): 1093-8.
CrossRef Google scholar
[72]
Rakova J, Truxova I, Holicek P, Salek C, Hensler M, Kasikova L, et al. TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome in AML patients. Oncoimmunology. 2021; 10(1): 1889822.
CrossRef Google scholar
[73]
Zhong W, Liu X, Zhu Z, Li Q, Li K. High levels of Tim-3(+)Foxp3(+)Treg cells in the tumor microenvironment is a prognostic indicator of poor survival of diffuse large B cell lymphoma patients. Int Immunopharmacol. 2021; 96: 107662.
CrossRef Google scholar
[74]
Zhang L, Du H, Xiao TW, Liu JZ, Liu GZ, Wang JX, et al. Prognostic value of PD-1 and TIM-3 on CD3+ T cells from diffuse large B-cell lymphoma. Biomed Pharmacother. 2015; 75: 83-7.
CrossRef Google scholar
[75]
Wu H, Sun HC, Ouyang GF. T-cell immunoglobulin mucin molecule-3, transformation growth factor β, and chemokine-12 and the prognostic status of diffuse large B-cell lymphoma. World J Clin Cases. 2022; 10(32): 11804-11.
CrossRef Google scholar
[76]
Marconato M, Kauer J, Salih HR, Märklin M, Heitmann JS. Expression of the immune checkpoint modulator OX40 indicates poor survival in acute myeloid leukemia. Sci Rep. 2022; 12(1): 15856.
CrossRef Google scholar
[77]
Ma J, Pang X, Li J, Zhang W, Cui W. The immune checkpoint expression in the tumor immune microenvironment of DLBCL: Clinicopathologic features and prognosis. Front Oncol. 2022; 12: 1069378.
CrossRef Google scholar
[78]
Moiseev I, Tcvetkov N, Epifanovskaya O, Babenko E, Parfenenkova A, Bakin E, et al. Landscape of alterations in the checkpoint system in myelodysplastic syndrome and implications for prognosis. PLoS One. 2022; 17(10): e0275399.
CrossRef Google scholar
[79]
Jin Z, Lan T, Zhao Y, Du J, Chen J, Lai J, et al. Higher TIGIT(+)CD226(-) γδ T cells in Patients with Acute Myeloid Leukemia. Immunol Invest. 2022; 51(1): 40-50.
CrossRef Google scholar
[80]
Bai KH, Zhang YY, Li XP, Tian XP, Pan MM, Wang DW, et al. Comprehensive analysis of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2): A potential novel pan-cancer immune checkpoint. Comput Struct Biotechnol J. 2022; 20: 5226-34.
CrossRef Google scholar
[81]
Fudaba H, Momii Y, Hirakawa T, Onishi K, Asou D, Matsushita W, et al. Sialic acid-binding immunoglobulin-like lectin-15 expression on peritumoral macrophages is a favorable prognostic factor for primary central nervous system lymphoma patients. Sci Rep. 2021; 11(1): 1206.
CrossRef Google scholar
[82]
Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann Transl Med. 2021; 9(12): 1037.
CrossRef Google scholar
[83]
Armand P, Zinzani PL, Lee HJ, Johnson NA, Brice P, Radford J, et al. Five-year follow-up of KEYNOTE-087: pembrolizumab monotherapy for relapsed/refractory classical Hodgkin lymphoma. Blood. 2023; 142(10): 878-86.
CrossRef Google scholar
[84]
Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017; 35(19): 2125-32.
CrossRef Google scholar
[85]
Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J Clin Oncol. 2016; 34(31): 3733-9.
CrossRef Google scholar
[86]
Ribrag V, Avigan DE, Green DJ, Wise-Draper T. Posada JG, Vij R, et al. Phase 1b trial of pembrolizumab monotherapy for relapsed/refractory multiple myeloma: KEYNOTE-013. Br J Haematol. 2019; 186(3):e41-e4.
CrossRef Google scholar
[87]
Armand P, Janssens A, Gritti G, Radford J, Timmerman J, Pinto A, et al. Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood. 2021; 137(5): 637-45.
CrossRef Google scholar
[88]
Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018; 36(14): 1428-39.
CrossRef Google scholar
[89]
Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J Clin Oncol. 2016; 34(23): 2698-704.
CrossRef Google scholar
[90]
Davids MS, Kim HT, Costello C, Herrera AF, Locke FL, Maegawa RO, et al. A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood. 2020; 135(24): 2182-91.
CrossRef Google scholar
[91]
Liu D, Ma C, Lu P, Gong J, Ye D, Wang S, et al. Dose escalation and expansion (phase Ia/Ib) study of GLS-010, a recombinant fully human antiprogrammed death-1 monoclonal antibody for advanced solid tumors or lymphoma. Eur J Cancer. 2021; 148: 1-13.
CrossRef Google scholar
[92]
Marjańska A, Pawińska-Wąsikowska K, Wieczorek A, Drogosiewicz M, Dembowska-Bagińska B, Bobeff K, et al. Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma. Cancers (Basel). 2024; 16(5): 968.
CrossRef Google scholar
[93]
Greve P, Beishuizen A, Hagleitner M, Loeffen J, Veening M, Boes M, et al. Nivolumab plus Brentuximab vedotin +/-bendamustine combination therapy: a safe and effective treatment in pediatric recurrent and refractory classical Hodgkin lymphoma. Front Immunol. 2023; 14: 1229558.
CrossRef Google scholar
[94]
Gould C, Lickiss J, Kankanige Y, Yerneni S, Lade S, Gandhi MK, et al. Characterisation of immune checkpoints in Richter syndrome identifies LAG3 as a potential therapeutic target. Br J Haematol. 2021; 195(1): 113-8.
CrossRef Google scholar
[95]
Godfrey J, Chen X, Sunseri N, Cooper A, Yu J, Varlamova A, et al. TIGIT is a key inhibitory checkpoint receptor in lymphoma. J Immunother Cancer. 2023; 11(6): e006582.
CrossRef Google scholar
[96]
Libert D, Zhao S, Younes S, Mosquera AP, Bharadwaj S, Ferreira C, et al. TIGIT is Frequently Expressed in the Tumor Microenvironment of Select Lymphomas: Implications for Targeted Therapy. Am J Surg Pathol. 2024; 48(3): 337-52.
CrossRef Google scholar
[97]
Chen H, Chen Y, Deng M, John S, Gui X, Kansagra A, et al. Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. J Immunother Cancer. 2020; 8(2): e000515.
CrossRef Google scholar
[98]
Zeller T, Lutz S, Münnich IA, Windisch R, Hilger P, Herold T, et al. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Front Immunol. 2022; 13: 929339.
CrossRef Google scholar
[99]
Kay R, Rosten PM, Humphries RK. CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol. 1991; 147(4): 1412-6.
CrossRef Google scholar
[100]
Freile J, Ustyanovska Avtenyuk N, Corrales MG, Lourens HJ, Huls G, van Meerten T, et al. CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines. 2022; 10(5): 1175.
CrossRef Google scholar
[101]
Sordo-Bahamonde C, Lorenzo-Herrero S. Gonzalez-Rodriguez AP, Á RP, González-García E, López-Soto A, et al. BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021; 13(8): 1766.
CrossRef Google scholar
[102]
Li J, Whelan S, Kotturi MF, Meyran D, D’Souza C, Hansen K, et al. PVRIG is a novel natural killer cell immune checkpoint receptor in acute myeloid leukemia. Haematologica. 2021; 106(12): 3115-24.
CrossRef Google scholar
[103]
Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007; 370(9581): 59-67.
CrossRef Google scholar
[104]
El Zarif T, Nassar AH, Adib E, Fitzgerald BG, Huang J, Mouhieddine TH, et al. Safety and Activity of Immune Checkpoint Inhibitors in People Living With HIV and Cancer: A Real-World Report From the Cancer Therapy Using Checkpoint Inhibitors in People Living With HIV-International (CATCH-IT) Consortium. J Clin Oncol. 2023; 41(21): 3712-23.
CrossRef Google scholar
[105]
Cook MR, Kim C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients With HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019; 5(7): 1049-54.
CrossRef Google scholar
[106]
Lurain K, Ramaswami R, Mangusan R, Widell A, Ekwede I, George J, et al. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin’s lymphoma. J Immunother Cancer. 2021; 9(2): e002097.
CrossRef Google scholar
[107]
Benito JM, Restrepo C, García-Foncillas J, Rallón N. Immune checkpoint inhibitors as potential therapy for reverting T-cell exhaustion and reverting HIV latency in people living with HIV. Front Immunol. 2023; 14: 1270881.
CrossRef Google scholar
[108]
Jhawar SR, Wang SJ, Thandoni A, Bommareddy PK, Newman JH, Marzo AL, et al. Combination oncolytic virus, radiation therapy, and immune checkpoint inhibitor treatment in anti-PD-1-refractory cancer. J Immunother Cancer. 2023; 11(7):e006780corr1.
CrossRef Google scholar
[109]
Conrad DP, Tsang J, Maclean M, Diallo JS, Le Boeuf F, Lemay CG, et al. Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia. Clin Cancer Res. 2013; 19(14): 3832-43.
CrossRef Google scholar
[110]
Hanauer JDS, Rengstl B, Kleinlützum D, Reul J, Pfeiffer A, Friedel T, et al. CD30-targeted oncolytic viruses as novel therapeutic approach against classical Hodgkin lymphoma. Oncotarget. 2018; 9(16): 12971-81.
CrossRef Google scholar
[111]
Wenthe J, Naseri S, Labani-Motlagh A. Enblad G, Wikström KI, Eriksson E, et al. Boosting CAR T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol Immunother. 2021; 70(10): 2851-65.
CrossRef Google scholar
[112]
Wenthe J, Naseri S, Hellström AC, Wiklund HJ, Eriksson E, Loskog A. Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Ther. 2020; 27(12): 948-59.
CrossRef Google scholar
[113]
Liu L, Chen J, Zhang H, Ye J, Moore C, Lu C, et al. Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity. Nat Cancer. 2022; 3(4): 437-52.
CrossRef Google scholar
[114]
Keshari S, Shavkunov AS, Miao Q, Saha A, Williams CD, Highsmith AM, et al. Neoantigen Cancer Vaccines and Different Immune Checkpoint Therapies Each Utilize Both Converging and Distinct Mechanisms that in Combination Enable Synergistic Therapeutic Efficacy. bioRxiv. 2024.
[115]
Biernacki MA, Foster KA, Woodward KB, Coon ME, Cummings C, Cunningham TM, et al. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J Clin Invest. 2020; 130(10): 5127-41.
CrossRef Google scholar
[116]
Blanco B, Domínguez-Alonso C, Alvarez-Vallina L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy. Clin Cancer Res. 2021; 27(20): 5457-64.
CrossRef Google scholar
[117]
Waite JC, Wang B, Haber L, Hermann A, Ullman E, Ye X, et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci Transl Med. 2020; 12(549): eaba2325.
CrossRef Google scholar
[118]
Clynes RA, Desjarlais JR. Redirected T Cell Cytotoxicity in Cancer Therapy. Annu Rev Med. 2019; 70: 437-50.
CrossRef Google scholar
[119]
Aigner M, Feulner J, Schaffer S, Kischel R, Kufer P, Schneider K, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013; 27(5): 1107-15.
CrossRef Google scholar
[120]
Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014; 123(3): 356-65.
CrossRef Google scholar
[121]
Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016; 30(2): 484-91.
CrossRef Google scholar
[122]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019; 18(3): 175-96.
CrossRef Google scholar
[123]
Deng H, Zhang Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release. 2018; 290: 28-45.
CrossRef Google scholar
[124]
Muliaditan T, Opzoomer JW, Caron J, Okesola M, Kosti P, Lall S, et al. Repurposing Tin Mesoporphyrin as an Immune Checkpoint Inhibitor Shows Therapeutic Efficacy in Preclinical Models of Cancer. Clin Cancer Res. 2018; 24(7): 1617-28.
CrossRef Google scholar
[125]
Bai H, Sun Q, Kong F, Dong H, Ma M, Liu F, et al. Zwitterion-functionalized hollow mesoporous Prussian blue nanoparticles for targeted and synergetic chemo-photothermal treatment of acute myeloid leukemia. J Mater Chem B. 2021; 9(26): 5245-54.
CrossRef Google scholar
[126]
Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2002; 17(1): 19-29.
CrossRef Google scholar
[127]
Zhang Y, Ellinger J, Ritter M, Schmidt-Wolf IGH. Clinical Studies Applying Cytokine-Induced Killer Cells for the Treatment of Renal Cell Carcinoma. Cancers (Basel). 2020; 12(9).
CrossRef Google scholar
[128]
Li Y, Sharma A, Bloemendal M, Schmidt-Wolf R. Kornek M, Schmidt-Wolf IGH. PD-1 blockade enhances cytokine-induced killer cell-mediated cytotoxicity in B-cell non-Hodgkin lymphoma cell lines. Oncol Lett. 2021; 22(2): 613.
CrossRef Google scholar
[129]
Linn YC, Lau LC, Hui KM. Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol. 2002; 116(1): 78-86.
CrossRef Google scholar
[130]
Hoyle C, Bangs CD, Chang P, Kamel O, Mehta B, Negrin RS. Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood. 1998; 92(9): 3318-27.
CrossRef Google scholar
[131]
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022; 21(1): 28.
CrossRef Google scholar
[132]
Bissonnette RP, Cesario RM, Goodenow B, Shojaei F, Gillings M. The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors. BMC Cancer. 2021; 21(1): 969.
CrossRef Google scholar
[133]
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021; 184(21): 5309-37.
CrossRef Google scholar
[134]
Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021; 11(6): 1368-97.
CrossRef Google scholar
[135]
Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020; 20(1): 25-39.
CrossRef Google scholar
[136]
Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996; 88(2): 100-8.
CrossRef Google scholar
[137]
Shin DS, Zaretsky JM, Escuin-Ordinas H. Garcia-Diaz A, Hu-Lieskovan S. Kalbasi A, et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 2017; 7(2): 188-201.
CrossRef Google scholar
[138]
Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M. Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017; 8(1): 1136.
CrossRef Google scholar
[139]
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discov. 2017; 7(12): 1420-35.
CrossRef Google scholar
[140]
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology. 2013; 140(2): 259-72.
CrossRef Google scholar
[141]
Gladue RP, Paradis T, Cole SH, Donovan C, Nelson R, Alpert R, et al. The CD40 agonist antibody CP-870, 893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol Immunother. 2011; 60(7): 1009-17.
CrossRef Google scholar
[142]
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016; 167(2): 397-404.e9.
CrossRef Google scholar
[143]
Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017; 8: 15440.
CrossRef Google scholar
[144]
Chen J, Zuo Z, Gao Y, Yao X, Guan P, Wang Y, et al. Aberrant JAK-STAT signaling-mediated chromatin remodeling impairs the sensitivity of NK/T-cell lymphoma to chidamide. Clin Epigenetics. 2023; 15(1): 19.
CrossRef Google scholar
[145]
Yang H, Ma P, Cao Y, Zhang M, Li L, Wei J, et al. ECPIRM, a Potential Therapeutic Agent for Cutaneous T-Cell Lymphoma, Inhibits Cell Proliferation and Promotes Apoptosis via a JAK/STAT Pathway. Anticancer Agents Med Chem. 2018; 18(3): 401-11.
CrossRef Google scholar
[146]
Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016; 6(2): 202-16.
[147]
George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity. 2017; 46(2): 197-204.
CrossRef Google scholar
[148]
Trujillo JA, Luke JJ, Zha Y, Segal JP, Ritterhouse LL, Spranger S, et al. Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma. J Immunother Cancer. 2019; 7(1): 295.
CrossRef Google scholar
[149]
Wang X, Huang H, Young KH. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging (Albany NY). 2015; 7(12): 1032-49.
CrossRef Google scholar
[150]
Koyama S, Akbay EA, Li YY, Herter-Sprie GS. Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016; 7: 10501.
CrossRef Google scholar
[151]
Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 2017; 30(12): 1666-76.
CrossRef Google scholar
[152]
Saxena K, Herbrich SM, Pemmaraju N, Kadia TM, DiNardo CD, Borthakur G, et al. A phase 1b/2 study of azacitidine with PD-L1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer. 2021; 127(20): 3761-71.
CrossRef Google scholar
[153]
Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017; 28(suppl_4): iv119-iv42.
CrossRef Google scholar
[154]
Fan Y, Xie W, Huang H, Wang Y, Li G, Geng Y, et al. Association of Immune Related Adverse Events With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Cancers: A Systemic Review and Meta-analysis. Front Oncol. 2021; 11: 633032.
CrossRef Google scholar
[155]
Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell. 2021; 184(6): 1575-88.
CrossRef Google scholar
[156]
Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018; 128(2): 715-20.
CrossRef Google scholar
[157]
Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018; 378(2): 158-68.
CrossRef Google scholar
[158]
Pauken KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH. Adverse Events Following Cancer Immunotherapy: Obstacles and Opportunities. Trends Immunol. 2019; 40(6): 511-23.
CrossRef Google scholar
[159]
Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018; 4(12): 1721-8.
CrossRef Google scholar
[160]
Hradska K, Hajek R, Jelinek T. Toxicity of Immune-Checkpoint Inhibitors in Hematological Malignancies. Front Pharmacol. 2021; 12: 733890.
CrossRef Google scholar
[161]
Badros A, Hyjek E, Ma N, Lesokhin A, Dogan A, Rapoport AP, et al. Pembrolizumab, pomalidomide, and low-dos. dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017; 130(10): 1189-97.
CrossRef Google scholar
[162]
Khouri IF, Fernandez Curbelo I, Turturro F, Jabbour EJ, Milton DR, Bassett RL, Jr., et al. Ipilimumab plus Lenalidomide after Allogeneic and Autologous Stem Cell Transplantation for Patients with Lymphoid Malignancies. Clin Cancer Res. 2018; 24(5): 1011-8.
CrossRef Google scholar
[163]
Bray ER, Lin RR, Li JN, Elgart GW, Elman SA, Maderal AD. Immune checkpoint inhibitor associated epidermal necrosis, beyond SJS and TEN: a review of 98 cases. Arch Dermatol Res. 2024; 316(6): 233.
CrossRef Google scholar
[164]
Coleman E, Ko C, Dai F, Tomayko MM, Kluger H, Leventhal JS. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J Am Acad Dermatol. 2019; 80(4): 990-7.
CrossRef Google scholar
[165]
Armand P, Rodig S, Melnichenko V, Thieblemont C, Bouabdallah K, Tumyan G, et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J Clin Oncol. 2019; 37(34): 3291-9.
CrossRef Google scholar
[166]
Chhabra N, Kennedy J. A Review of Cancer Immunotherapy Toxicity: Immune Checkpoint Inhibitors. J Med Toxicol. 2021; 17(4): 411-24.
CrossRef Google scholar
[167]
Chang LS, Barroso-Sousa R. Tolaney SM, Hodi FS, Kaiser UB, Min L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr Rev. 2019; 40(1): 17-65.
CrossRef Google scholar
[168]
Zinzani PL, Santoro A, Gritti G, Brice P, Barr PM, Kuruvilla J, et al. Nivolumab Combined With Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety From the Phase II CheckMate 436 Study. J Clin Oncol. 2019; 37(33): 3081-9.
CrossRef Google scholar
[169]
Younes A, Brody J, Carpio C, Lopez-Guillermo A. Ben-Yehuda D, Ferhanoglu B, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 2019; 6(2): e67-e78.
CrossRef Google scholar
[170]
Maruyama D, Terui Y, Yamamoto K, Fukuhara N, Choi I, Kuroda J, et al. Final results of a phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Jpn J Clin Oncol. 2020; 50(11): 1265-73.
CrossRef Google scholar
[171]
Rocha M, Correia de Sousa J, Salgado M, Araújo A, Pedroto I. Management of Gastrointestinal Toxicity from Immune Checkpoint Inhibitor. GE Port J Gastroenterol. 2019; 26(4): 268-74.
CrossRef Google scholar
[172]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020; 70(2): 86-104.
CrossRef Google scholar
[173]
Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018; 71(16): 1755-64.
[174]
Martinez-Calle N, Rodriguez-Otero P. Villar S, Mejías L, Melero I, Prosper F, et al. Anti-PD1 associated fulminant myocarditis after a single pembrolizumab dose: the role of occult pre-existing autoimmunity. Haematologica. 2018; 103(7): e318-e21.
CrossRef Google scholar
[175]
Mateos MV, Blacklock H, Schjesvold F, Oriol A, Simpson D, George A, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019; 6(9): e459-e69.
[176]
Usmani SZ, Schjesvold F, Oriol A, Karlin L, Cavo M, Rifkin RM, et al. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019; 6(9):e448-e58.
[177]
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, et al. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal. 2019; 30(18): 2110-53.
CrossRef Google scholar
[178]
Upadhrasta S, Elias H, Patel K, Zheng L. Managing cardiotoxicity associated with immune checkpoint inhibitors. Chronic Dis Transl Med. 2019; 5(1): 6-14.
CrossRef Google scholar
[179]
Čelutkienė J, Pudil R, López-Fernández T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J. et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020; 22(9): 1504-24.
[180]
Shi Y, Wu J, Wang Z, Zhang L, Wang Z, Zhang M, et al. Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: an open-label phase 2 study (Gxplore-002). J Hematol Oncol. 2021; 14(1): 12.
CrossRef Google scholar
[181]
Tinawi M, Bastani B. Nephrotoxicity of Immune Checkpoint Inhibitors: Acute Kidney Injury and Beyond. Cureus. 2020; 12(12): e12204.
[182]
Liu Y, Wang C, Li X, Dong L, Yang Q, Chen M, et al. Improved clinical outcome in a randomized phase II study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma. J Immunother Cancer. 2021; 9(4): e002347.
CrossRef Google scholar
[183]
Mei Q, Zhang W, Liu Y, Yang Q, Rasko JEJ, Nie J, et al. Camrelizumab Plus Gemcitabine, Vinorelbine, and Pegylated Liposomal Doxorubicin in Relapsed/Refractory Primary Mediastinal B-Cell Lymphoma: A Single-Arm, Open-Label, Phase II Trial. Clin Cancer Res. 2020; 26(17): 4521-30.
CrossRef Google scholar
[184]
Esfahani K, Elkrief A, Calabrese C, Lapointe R, Hudson M, Routy B, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol. 2020; 17(8): 504-15.
CrossRef Google scholar
[185]
Sakamuri D, Glitza IC, Betancourt Cuellar SL, Subbiah V, Fu S, Tsimberidou AM, et al. Phase I Dose-Escalation Study of Anti-CTLA-4 Antibody Ipilimumab and Lenalidomide in Patients with Advanced Cancers. Mol Cancer Ther. 2018; 17(3): 671-6.
CrossRef Google scholar
[186]
Tao R, Fan L, Song Y, Hu Y, Zhang W, Wang Y, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: a multicenter, single-arm, phase 2 trial (ORIENT-4). Signal Transduct Target Ther. 2021; 6(1): 365.
CrossRef Google scholar
[187]
Sanborn RE, Hamid O, de Vries EG, Ott PA, Garcia-Corbacho J. Boni V, et al. CX-072 (pacmilimab), a Probody PD-L1 inhibitor, in combination with ipilimumab in patients with advanced solid tumors (PROCLAIM-CX-072): a first-in-human, dose-finding study. J Immunother Cancer. 2021; 9(7): e002446.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.
PDF

Accesses

Citations

Detail

Sections
Recommended

/