“Find Me” and “Eat Me” signals: tools to drive phagocytic processes for modulating antitumor immunity

Lingjun Xiao, Louqian Zhang, Ciliang Guo, Qilei Xin, Xiaosong Gu, Chunping Jiang, Junhua Wu

Cancer Communications ›› 2024, Vol. 44 ›› Issue (07) : 791-832.

PDF
Cancer Communications ›› 2024, Vol. 44 ›› Issue (07) : 791-832. DOI: 10.1002/cac2.12579
REVIEW

“Find Me” and “Eat Me” signals: tools to drive phagocytic processes for modulating antitumor immunity

Author information +
History +

Abstract

Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect “find me” signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send “eat me” signals that are recognized by phagocytes via specific receptors. “Find me” and “eat me” signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic “find me” and “eat me” signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between “find me” and “eat me” signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate “find me” and “eat me” signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine “find me” and “eat me” signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.

Keywords

cancer immunotherapy / CARL / CX3CL1 / “Eat me” signal / “Find me” signal / Fc / LPC / Phagocytosis / PtSer, SLAMF7

Cite this article

Download citation ▾
Lingjun Xiao, Louqian Zhang, Ciliang Guo, Qilei Xin, Xiaosong Gu, Chunping Jiang, Junhua Wu. “Find Me” and “Eat Me” signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Communications, 2024, 44(07): 791‒832 https://doi.org/10.1002/cac2.12579

References

[1]
Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008; 112(4): 935–945.
CrossRef Google scholar
[2]
Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014; 14(8): 571–578.
CrossRef Google scholar
[3]
Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the tumor microenvironment. Annu Rev Pathol. 2021; 16: 93–122.
CrossRef Google scholar
[4]
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med. 2010; 207(9): 1807–1817.
CrossRef Google scholar
[5]
Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov. 2022; 21(8): 601–620.
CrossRef Google scholar
[6]
Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the Brain: Homeostasis and Disease. Front Immunol. 2019; 10: 790.
CrossRef Google scholar
[7]
Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015; 125(9): 3384–3391.
CrossRef Google scholar
[8]
Wang J, Lu Q, Chen X, Aifantis I. Targeting MHC-I inhibitory pathways for cancer immunotherapy. Trends Immunol. 2024; 45(3): 177–187.
CrossRef Google scholar
[9]
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer. 2023; 22(1): 194.
CrossRef Google scholar
[10]
Chen H, Chen Y, Deng M, John S, Gui X, Kansagra A, et al. Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. J Immunother Cancer. 2020; 8(2): e000515.
CrossRef Google scholar
[11]
Zhang P, Zheng P, Liu Y. Amplification of the CD24 gene is an independent predictor for poor prognosis of breast cancer. Front Genet. 2019; 10: 461459.
CrossRef Google scholar
[12]
Shapira S, Kazanov D, Mdah F, Yaakobi H, Herishanu Y, Perry C, et al. Feasibly of CD24/CD11b as a screening test for hematological malignancies. J Pers Med. 2021; 11(8): 724.
CrossRef Google scholar
[13]
Medina-Echeverz J, Eggert T, Han M, Greten TF. Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother. 2015; 64(8): 931–940.
CrossRef Google scholar
[14]
Stossel TP. On the crawling of animal cells. Science. 1993; 260(5111): 1086–1094.
CrossRef Google scholar
[15]
Kim MK, Huang ZY, Hwang PH, Jones BA, Sato N, Hunter S, et al. Fcgamma receptor transmembrane domains: role in cell surface expression, gamma chain interaction, and phagocytosis. Blood. 2003; 101(11): 4479–4484.
CrossRef Google scholar
[16]
Lauber K, Bohn E, Kröber SM, Xiao Y-j, Blumenthal SG, Lindemann RK, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 2003; 113(6): 717–730.
CrossRef Google scholar
[17]
Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018; 18(1): 33–50.
CrossRef Google scholar
[18]
Horino K, Nishiura H, Ohsako T, Shibuya Y, Hiraoka T, Kitamura N, et al. A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab Invest. 1998; 78(5): 603–617.
[19]
Murakami Y, Tian L, Voss OH, Margulies DH, Krzewski K, Coligan JE. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ. 2014; 21(11): 1746–1757.
CrossRef Google scholar
[20]
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002; 417(6885): 182–187.
CrossRef Google scholar
[21]
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2): 271–285.
CrossRef Google scholar
[22]
Oldenborg P-A, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med. 2001; 193(7): 855–862.
CrossRef Google scholar
[23]
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545(7655): 495–499.
CrossRef Google scholar
[24]
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, et al. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 2023; 186(18): 3903–3920. e21.
CrossRef Google scholar
[25]
Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol. 2020; 20(12): 739–755.
CrossRef Google scholar
[26]
Lu X. Structure and Function of Ligand CX3CL1 and its Receptor CX3CR1 in Cancer. Curr Med Chem. 2022; 29(41): 6228–6246.
CrossRef Google scholar
[27]
Nishiura H, Kawakami T, Kawabe M, Kato-Kogoe N. Yamada N, Nakasho K, et al. RP S19 C-terminal peptide trimer acts as a C5a receptor antagonist. Biochem Biophys Rep. 2016; 7: 70–76.
CrossRef Google scholar
[28]
Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature. 2013; 497(7448): 263–267.
CrossRef Google scholar
[29]
DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol. 2010; 184(4): 1918–1930.
CrossRef Google scholar
[30]
Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008; 118(5): 1657–1668.
CrossRef Google scholar
[31]
Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016; 44(5): 989–1004.
CrossRef Google scholar
[32]
Savill J, Gregory C. Apoptotic PS to Phagocyte TIM-4: Eat Me. Immunity. 2007; 27(6): 830–832.
CrossRef Google scholar
[33]
Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH, et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 2008; 15(1): 192–201.
CrossRef Google scholar
[34]
Park S-Y, Yun Y, Lim J-S, Kim M-J. Kim S-Y, Kim J-E. et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun. 2016; 7(1): 10871.
CrossRef Google scholar
[35]
Kinchen JM, Cabello J, Klingele D, Wong K, Feichtinger R, Schnabel H, et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature. 2005; 434(7029): 93–99.
CrossRef Google scholar
[36]
Simhadri VR, Andersen JF, Calvo E, Choi S-C, Coligan JE, Borrego F. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood. 2012; 119(12): 2799–2809.
CrossRef Google scholar
[37]
Borrego F. The CD300 molecules: an emerging family of regulators of the immune system. Blood. 2013; 121(11): 1951–1960.
CrossRef Google scholar
[38]
Akakura S, Singh S, Spataro M, Akakura R, Kim JI, Albert ML, et al. The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res. 2004; 292(2): 403–416.
CrossRef Google scholar
[39]
Asano K, Miwa M, Miwa K, Hanayama R, Nagase H, Nagata S, et al. Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J Exp Med. 2004; 200(4): 459–467.
CrossRef Google scholar
[40]
Nakano T, Ishimoto Y, Kishino J, Umeda M, Inoue K, Nagata K, et al. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J Biol Chem. 1997; 272(47): 29411–29414.
CrossRef Google scholar
[41]
Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol. 2003; 4(1): 87–91.
CrossRef Google scholar
[42]
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer. 2014; 14(12): 769–785.
CrossRef Google scholar
[43]
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer. 2019; 18(1): 94.
CrossRef Google scholar
[44]
Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992; 90(4): 1513–1522.
CrossRef Google scholar
[45]
Munerati M, Cortesi R, Ferrari D, Di Virgilio F, Nastruzzi C. Macrophages loaded with doxorubicin by ATP-mediated permeabilization: Potential carriers for antitumor therapy. Biochim Biophys Acta. 1994; 1224(2): 269–276.
CrossRef Google scholar
[46]
de Andrade Mello P, Bian S, Savio LEB, Zhang H, Zhang J, Junger W, et al. Hyperthermia and associated changes in membrane fluidity potentiate P2×7 activation to promote tumor cell death. Oncotarget. 2017; 8(40): 67254–67268.
CrossRef Google scholar
[47]
Qi B, Yu T, Wang C, Wang T, Yao J, Zhang X, et al. Shock wave-induced ATP release from osteosarcoma U2OS cells promotes cellular uptake and cytotoxicity of methotrexate. J Exp Clin Cancer Res. 2016; 35(1): 161.
CrossRef Google scholar
[48]
Kashyap AS, Thelemann T, Klar R, Kallert SM, Festag J, Buchi M, et al. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. J Immunother Cancer. 2019; 7(1): 67.
CrossRef Google scholar
[49]
Wang YX, Martin-McNulty B. da Cunha V, Vincelette J, Lu X, Feng Q, et al. Fasudil, a Rho-kinas. inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation. 2005; 111(17): 2219–2226.
CrossRef Google scholar
[50]
Takamura M, Sakamoto M, Genda T, Ichida T, Asakura H, Hirohashi S. Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology. 2001; 33(3): 577–581.
CrossRef Google scholar
[51]
Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011; 30(42): 4297–4306.
CrossRef Google scholar
[52]
Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y, Morioka S, et al. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020; 580(7801): 130–135.
CrossRef Google scholar
[53]
Brown GC. Cell death by phagocytosis. Nat Rev Immunol. 2024; 24(2): 91–102.
CrossRef Google scholar
[54]
Lauber K, Bohn E, Kröber SM, Xiao YJ, Blumenthal SG, Lindemann RK, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 2003; 113(6): 717–730.
CrossRef Google scholar
[55]
Kabarowski JHS, Zhu K, Le LQ, Witte ON, Xu Y. Lysophosphatidylcholine as a Ligand for the Immunoregulatory Receptor G2A. Science. 2001; 293(5530): 702–705.
CrossRef Google scholar
[56]
Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta. 2006; 1758(12): 2016–2026.
CrossRef Google scholar
[57]
Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 2010; 467(7317): 863–867.
CrossRef Google scholar
[58]
Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008; 112(13): 5026–5036.
CrossRef Google scholar
[59]
Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, et al. ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors. Science. 2006; 314(5806): 1792–1795.
CrossRef Google scholar
[60]
Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008; 112(13): 5026–5036.
CrossRef Google scholar
[61]
Horino K, Nishiura H, Ohsako T, Shibuya Y, Hiraoka T, Kitamura N, et al. A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab Invest. 1998; 78(5): 603–617.
[62]
Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999; 274(33): 23155–23159.
CrossRef Google scholar
[63]
Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999; 284(5411): 147–151.
CrossRef Google scholar
[64]
Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M. The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett. 2000; 466(1): 143–147.
CrossRef Google scholar
[65]
Hou Y, Plett PA, Ingram DA, Rajashekhar G, Orschell CM, Yoder MC, et al. Endothelial-monocyte–activating polypeptide II induces migration of endothelial progenitor cells via the chemokine receptor CXCR3. Exp Hematol. 2006; 34(8): 1125–1132.
CrossRef Google scholar
[66]
Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K. et al. Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem. 2008; 283(9): 5296–5305.
CrossRef Google scholar
[67]
McMurray HF, Parthasarathy S, Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 1993; 92(2): 1004–1008.
CrossRef Google scholar
[68]
Kim SJ, Gershov D, Ma X, Brot N, Elkon KB. I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med. 2002; 196(5): 655–665.
CrossRef Google scholar
[69]
Atsumi G-i, Murakami M, Tajima M, Shimbara S, Hara N, Kudo I. The perturbed membrane of cells undergoing apoptosis is susceptible to type II secretory phospholipase A2 to liberate arachidonic acid. Biochim Biophys Acta. 1997; 1349(1): 43–54.
CrossRef Google scholar
[70]
Kim SJ, Gershov D, Ma X, Brot N, Elkon KB. I-PLA2 Activation during Apoptosis Promotes the Exposure of Membrane Lysophosphatidylcholine Leading to Binding by Natural Immunoglobulin M Antibodies and Complement Activation. J Exp Med. 2002; 196(5): 655–665.
CrossRef Google scholar
[71]
Lauber K, Blumenthal SG, Waibel M, Wesselborg S. Clearance of Apoptotic Cells: Getting Rid of the Corpses. Mol Cell. 2004; 14(3): 277–287.
CrossRef Google scholar
[72]
Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A, et al. Release of lysophospholipid ‘find-me’ signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity. 2012; 45(8): 568–573.
CrossRef Google scholar
[73]
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009; 461(7261): 282–286.
CrossRef Google scholar
[74]
Jacob F, Pérez Novo C, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal. 2013; 9(3): 285–306.
CrossRef Google scholar
[75]
Gorini S, Gatta L, Pontecorvo L, Vitiello L, la Sala A. Regulation of innate immunity by extracellular nucleotides. Am J Blood Res. 2013; 3(1): 14–28.
[76]
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic Cell Death in Cancer Therapy. Annu Rev Immunol. 2013; 31(1): 51–72.
CrossRef Google scholar
[77]
Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy. 2013; 9(10): 1624–1625.
CrossRef Google scholar
[78]
Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci. 2018; 19(4): 1222.
CrossRef Google scholar
[79]
Schwiebert EM. ABC transporter-facilitated ATP conductive transport. Am J Physiol. 1999; 276(1): C1–C8.
CrossRef Google scholar
[80]
Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, et al. Structural model of ATP-binding proteing associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990; 346(6282): 362–365.
CrossRef Google scholar
[81]
Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, et al. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem. 1994; 269(32): 20584–20591.
CrossRef Google scholar
[82]
Roman RM, Lomri N, Braunstein G, Feranchak AP, Simeoni LA, Davison AK, et al. Evidence for Multidrug Resistance-1 P-Glycoprotein-dependent Regulation of Cellular ATP Permeability. J Membr Biol. 2001; 183(3): 165–173.
CrossRef Google scholar
[83]
Syrjanen JL, Michalski K, Chou T-H, Grant T, Rao S, Simorowski N, et al. Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol. 2020; 27(2): 150–159.
CrossRef Google scholar
[84]
Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L. Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A. et al. Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophys J. 2016; 111(7): 1429–1443.
CrossRef Google scholar
[85]
Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: A Feasible Target for Cancer Therapy. Cells. 2020; 9(11): 2496.
CrossRef Google scholar
[86]
Brandao-Burch A, Key M, Patel J, Arnett T, Orriss I. The P2×7 Receptor is an Important Regulator of Extracellular ATP Levels. Front Endocrinol (Lausanne). 2012; 3: 41.
CrossRef Google scholar
[87]
Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 2010; 467(7317): 863–867.
CrossRef Google scholar
[88]
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009; 461(7261): 282–286.
CrossRef Google scholar
[89]
Koizumi S, Shigemoto-Mogami Y. Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature. 2007; 446(7139): 1091–1095.
CrossRef Google scholar
[90]
Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R. Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology. 2011; 216(1): 1–11.
CrossRef Google scholar
[91]
Yamaguchi H, Maruyama T, Urade Y, Nagata S. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. Elife. 2014; 3: e02172.
CrossRef Google scholar
[92]
Ren R, Pang B, Han Y, Li Y. A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate. Contact (Thousand Oaks). 2021; 4: 2515256421995601.
CrossRef Google scholar
[93]
Vu TM, Ishizu A-N, Foo JC, Toh XR, Zhang F, Whee DM, et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature. 2017; 550(7677): 524–528.
CrossRef Google scholar
[94]
Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R, et al. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. Immunity. 2016; 44(2): 287–302.
CrossRef Google scholar
[95]
Weigert A, Cremer S, Schmidt MV, von Knethen A, Angioni C, Geisslinger G, et al. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood. 2010; 115(17): 3531–3540.
CrossRef Google scholar
[96]
Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005; 5(7): 560–570.
CrossRef Google scholar
[97]
Strader CR, Pearce CJ, Oberlies NH. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod. 2011; 74(4): 900–907.
CrossRef Google scholar
[98]
Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997; 385(6617): 640–644.
CrossRef Google scholar
[99]
Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004; 1(2): 95–104.
[100]
Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001; 276(41): 37993–8001.
CrossRef Google scholar
[101]
Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood. 2003; 102(4): 1186–1195.
CrossRef Google scholar
[102]
Haskell CA, Cleary MD, Charo IF. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem. 1999; 274(15): 10053–10058.
CrossRef Google scholar
[103]
Feng L, Chen S, Garcia GE, Xia Y, Siani MA, Botti P, et al. Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR1 rapid communication. Kidney Int. 1999; 56(2): 612–620.
CrossRef Google scholar
[104]
Legler DF, Thelen M. New insights in chemokine signaling. F1000Res. 2018; 7: 95.
CrossRef Google scholar
[105]
Yan Y, Cao S, Liu X, Harrington SM, Bindeman WE, Adjei AA, et al. CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight. 2018; 3(8): e97828.
CrossRef Google scholar
[106]
Pallandre JR, Krzewski K, Bedel R, Ryffel B, Caignard A, Rohrlich PS, et al. Dendritic cell and natural killer cell cross-talk: a pivotal role of CX3CL1 in NK cytoskeleton organization and activation. Blood. 2008; 112(12): 4420–4424.
CrossRef Google scholar
[107]
Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997; 91(4): 521–530.
CrossRef Google scholar
[108]
Chao MP, Jaiswal S, Weissman-Tsukamoto R. Alizadeh AA, Gentles AJ, Volkmer J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010; 2(63): 63ra94.
CrossRef Google scholar
[109]
Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005; 123(2): 321–334.
CrossRef Google scholar
[110]
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. Embo j. 2012; 31(5): 1062–1079.
CrossRef Google scholar
[111]
Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001; 14(3): 303–313.
CrossRef Google scholar
[112]
Lillis AP, Greenlee MC, Mikhailenko I, Pizzo SV, Tenner AJ, Strickland DK, et al. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J Immunol. 2008; 181(1): 364–373.
CrossRef Google scholar
[113]
Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014; 14(3): 166–180.
CrossRef Google scholar
[114]
Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol. 2010; 2(3): a002469.
CrossRef Google scholar
[115]
Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol. 2006; 6(1): 56–66.
CrossRef Google scholar
[116]
Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017; 544(7651): 493–497.
CrossRef Google scholar
[117]
Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol. 2016; 38: 45–51.
CrossRef Google scholar
[118]
Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988; 6: 251–281.
CrossRef Google scholar
[119]
Hulett MD, Hogarth PM. Molecular Basis of Fc Receptor Function. In: Dixon FJ, editor. Adv Immunol. Academic Press; 1994; 57: 1–127.
CrossRef Google scholar
[120]
Fridman WH. Fc receptors and immunoglobulin binding factors. Faseb j. 1991; 5(12): 2684–2690.
CrossRef Google scholar
[121]
Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcγRIV: A Novel FcR with Distinct IgG Subclass Specificity. Immunity. 2005; 23(1): 41–51.
CrossRef Google scholar
[122]
Park D, Tosello-Trampont AC. Elliott MR, Lu M, Haney LB, Ma Z, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007; 450(7168): 430–434.
CrossRef Google scholar
[123]
Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. “Eat me” imaging and therapy. Adv Drug Deliv Rev. 2016; 99(Pt A): 2–11.
CrossRef Google scholar
[124]
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev. 2010; 235(1): 172–189.
CrossRef Google scholar
[125]
Park SY, Kang KB, Thapa N, Kim SY, Lee SJ, Kim IS. Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J Biol Chem. 2008; 283(16): 10593–10600.
CrossRef Google scholar
[126]
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002; 417(6885): 182–187.
CrossRef Google scholar
[127]
He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 2011; 12(4): 358–364.
CrossRef Google scholar
[128]
Yang H, Chen YZ, Zhang Y, Wang X, Zhao X, Godfroy JI, 3rd, et al. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nat Commun. 2015; 6: 5717.
CrossRef Google scholar
[129]
Oka K, Sawamura T, Kikuta K-i, Itokawa S, Kume N, Kita T, et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci U S A. 1998; 95(16): 9535–9540.
CrossRef Google scholar
[130]
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T Cells and Immune Tolerance. Cell. 2008; 133(5): 775–787.
CrossRef Google scholar
[131]
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013; 38(4): 729–741.
CrossRef Google scholar
[132]
Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res. 2021; 31(1): 5–16.
CrossRef Google scholar
[133]
Michalak M, Groenendyk J, Szabo E, Gold Leslie I, Opas M. Calreticulin, a multi-proces. calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009; 417(3): 651–666.
CrossRef Google scholar
[134]
Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem. 1974; 249(3): 974–979.
CrossRef Google scholar
[135]
Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, et al. Functional specialization of calreticulin domains. J Cell Biol. 2001; 154(5): 961–972.
CrossRef Google scholar
[136]
Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J. 1999; 344(Pt 2): 281–292.
CrossRef Google scholar
[137]
Feng M, Chen JY, Weissman-Tsukamoto R. Volkmer JP, Ho PY, McKenna KM, et al. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A. 2015; 112(7): 2145–2150.
CrossRef Google scholar
[138]
Byrne JC, J NG, Stacey KB, Coffey BM, McCarthy E, Thomas W, et al. Bruton’s tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. J Immunol. 2013; 190(10): 5207–5215.
CrossRef Google scholar
[139]
Song X, Zhou Z, Li H, Xue Y, Lu X, Bahar I, et al. Pharmacologic Suppression of B7-H4 Glycosylation Restores Antitumor Immunity in Immune-Cold Breast Cancers. Cancer Discov. 2020; 10(12): 1872–1893.
CrossRef Google scholar
[140]
Afshar N, Black BE, Paschal BM. Retrotranslocation of the Chaperone Calreticulin from the Endoplasmic Reticulum Lumen to the Cytosol. Mol Cell Biol. 2005; 25(20): 8844–8853.
CrossRef Google scholar
[141]
Gasser S, Raulet DH. Activation and self-tolerance of natural killer cells. Immunol Rev. 2006; 214: 130–142.
CrossRef Google scholar
[142]
Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol. 2009; 9(1): 39–46.
CrossRef Google scholar
[143]
Cannons JL, Tangye SG, Schwartzberg PL. SLAM Family Receptors and SAP Adaptors in Immunity. Annu Rev Immunol. 2011; 29(1): 665–705.
CrossRef Google scholar
[144]
Latchman Y, McKay PF, Reiser H. Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol. 1998; 161(11): 5809–5812.
CrossRef Google scholar
[145]
Brown MH, Boles K, van der Merwe PA, Kumar V, Mathew PA, Barclay AN. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med. 1998; 188(11): 2083–2090.
CrossRef Google scholar
[146]
Dong Z, Cruz-Munoz ME. Zhong M-C, Chen R, Latour S, Veillette A. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat Immunol. 2009; 10: 973–980.
CrossRef Google scholar
[147]
Veillette A, Dong Z, Latour S. Consequence of the SLAM-SAP Signaling Pathway in Innate-like and Conventional Lymphocytes. Immunity. 2007; 27(5): 698–710.
CrossRef Google scholar
[148]
Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998; 395(6701): 462–469.
CrossRef Google scholar
[149]
Jakus Z, Fodor S, Abram CL, Lowell CA, Mócsai A. Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Trends Cell Biol. 2007; 17(10): 493–501.
CrossRef Google scholar
[150]
Li D, Xiong W, Wang Y, Feng J, He Y, Du J, et al. SLAMF3 and SLAMF4 are immune checkpoints that constrain macrophage phagocytosis of hematopoietic tumors. Sci Immunol. 2022; 7(67): eabj5501.
[151]
Kim JR, Horton NC, Mathew SO, Mathew PA. CS1 (SLAMF7) inhibits production of proinflammatory cytokines by activated monocytes. Inflamm Res. 2013; 62(8): 765–772.
CrossRef Google scholar
[152]
Lee JK, Mathew SO, Vaidya SV, Kumaresan PR, Mathew PA. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. J Immunol. 2007; 179(7): 4672–4678.
CrossRef Google scholar
[153]
Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013; 88(1): 168–177.
CrossRef Google scholar
[154]
Chen S, Yang M, Du J, Li D, Li Z, Cai C, et al. The Self-Specific Activation Receptor SLAM Family Is Critical for NK Cell Education. Immunity. 2016; 45(2): 292–304.
CrossRef Google scholar
[155]
Bae J, Song W, Smith R, Daley J, Tai YT, Anderson KC, et al. A novel immunogenic CS1-specific peptide inducing antigen-specific cytotoxic T lymphocytes targeting multiple myeloma. Br J Haematol. 2012; 157(6): 687–701.
CrossRef Google scholar
[156]
Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011; 29: 665–705.
CrossRef Google scholar
[157]
Tassi I, Colonna M. The cytotoxicity receptor CRACC (CS-1) recruits EAT-2 and activates the PI3K and phospholipase Cgamma signaling pathways in human NK cells. J Immunol. 2005; 175(12): 7996–8002.
CrossRef Google scholar
[158]
Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G. A novel receptor involved in T-cell activation. Nature. 1995; 376(6537): 260–263.
CrossRef Google scholar
[159]
Engel P, Eck MJ, Terhorst C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol. 2003; 3(10): 813–821.
CrossRef Google scholar
[160]
Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. Embo j. 2001; 20(21): 5840–5852.
CrossRef Google scholar
[161]
Dupré L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Aricò M, et al. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood. 2005; 105(11): 4383–4389.
CrossRef Google scholar
[162]
Eissmann P, Watzl C. Molecular analysis of NTB-A signaling: a role for EAT-2 in NTB-A-mediated activation of human NK cells. J Immunol. 2006; 177(5): 3170–3177.
CrossRef Google scholar
[163]
Pérez-Quintero L-A, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-lik. adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization. J Exp Med. 2014; 211(4): 727–742.
CrossRef Google scholar
[164]
Guo H, Cruz-Munoz ME. Wu N, Robbins M, Veillette A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol Cell Biol. 2015; 35(1): 41–51.
CrossRef Google scholar
[165]
Wu Y, Wang Q, Li M, Lao J, Tang H, Ming S, et al. SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis. J Clin Invest. 2023; 133(6): e150224.
CrossRef Google scholar
[166]
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev. 2014; 262(1): 193–215.
CrossRef Google scholar
[167]
Hamerman JA, Ni M, Killebrew JR, Chu C-L, Lowell CA. The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev. 2009; 232(1): 42–58.
CrossRef Google scholar
[168]
Todd RF, 3rd. The continuing saga of complement receptor type 3 (CR3). J Clin Invest. 1996; 98(1): 1–2.
CrossRef Google scholar
[169]
Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012; 119(24): 5640–5649.
CrossRef Google scholar
[170]
Reth M. Antigen receptor tail clue. Nature. 1989; 338(6214): 383–384.
CrossRef Google scholar
[171]
Cambier JC. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol Today. 1995; 16(2): 110.
CrossRef Google scholar
[172]
Kurosaki T. Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol. 1999; 17: 555–592.
CrossRef Google scholar
[173]
Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov. 2012; 11(4): 311–331.
CrossRef Google scholar
[174]
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, et al. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer. 2024; 24(1): 51–71.
CrossRef Google scholar
[175]
Pignata C, Prasad KV, Robertson MJ, Levine H, Rudd CE, Ritz J. Fc gamma RIIIA-mediated signaling involves src-family lck in human natural killer cells. J Immunol. 1993; 151(12): 6794–6800.
CrossRef Google scholar
[176]
Ghazizadeh S, Bolen JB, Fleit HB. Physical and functional association of Src-related protein tyrosine kinases with Fc gamma RII in monocytic THP-1 cells. J Biol Chem. 1994; 269(12): 8878–8884.
CrossRef Google scholar
[177]
Kawakami Y, Yao L, Miura T, Tsukada S, Witte ON, Kawakami T. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking. Mol Cell Biol. 1994; 14(8): 5108–5113.
CrossRef Google scholar
[178]
Junker F, Gordon J, Qureshi O. Fc gamma receptors and their role in antigen uptake, presentation, and T cell activation. Front Immunol. 2020; 11: 547589.
CrossRef Google scholar
[179]
Daëron M. Fc receptor biology. Annu Rev Immunol. 1997; 15(1): 203–234.
CrossRef Google scholar
[180]
Cady CT, Powell MS, Harbeck RJ, Giclas PC, Murphy JR, Katial RK, et al. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcγRIIA and FcγRIIB. Immunol Lett. 2010; 130(1): 57–65.
CrossRef Google scholar
[181]
Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006; 177(4): 2051–2055.
CrossRef Google scholar
[182]
Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature. 1996; 383(6597): 263–266.
CrossRef Google scholar
[183]
Malbec O, Fong DC, Turner M, Tybulewicz VL, Cambier JC, Fridman WH, et al. Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol. 1998; 160(4): 1647–1658.
CrossRef Google scholar
[184]
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol. 2020; 20(10): 633–643.
CrossRef Google scholar
[185]
Morris AB, Farley CR, Pinelli DF, Adams LE, Cragg MS, Boss JM, et al. Signaling through the Inhibitory Fc Receptor FcγRIIB Induces CD8(+) T Cell Apoptosis to Limit T Cell Immunity. Immunity. 2020; 52(1): 136–150.e6.
CrossRef Google scholar
[186]
Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008; 8(1): 34–47.
CrossRef Google scholar
[187]
Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016; 23(6): 962–978.
CrossRef Google scholar
[188]
Yoshihama Y, Namiki H, Kato T, Shimazaki N, Takaishi S, Kadoshima-Yamaoka K. et al. Potent and Selective PTDSS1 Inhibitors Induce Collateral Lethality in Cancers with PTDSS2 Deletion. Cancer Res. 2022; 82(21): 4031–4043.
CrossRef Google scholar
[189]
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992; 148(7): 2207–2216.
CrossRef Google scholar
[190]
Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998; 5(7): 551–562.
CrossRef Google scholar
[191]
Segawa K, Nagata S. An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends Cell Biol. 2015; 25(11): 639–650.
CrossRef Google scholar
[192]
Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem. 2007; 282(25): 18357–18364.
CrossRef Google scholar
[193]
Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells. Science. 2013; 341(6144): 403–406.
CrossRef Google scholar
[194]
Maruoka M, Zhang P, Mori H, Imanishi E, Packwood DM, Harada H, et al. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol Cell. 2021; 81(7): 1397–1410.e9.
CrossRef Google scholar
[195]
Sakuragi T, Kosako H, Nagata S. Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc Natl Acad Sci U S A. 2019; 116(8): 2907–2912.
CrossRef Google scholar
[196]
Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, et al. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol. 2010; 12(7): 655–664.
CrossRef Google scholar
[197]
Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010; 468(7325): 834–838.
CrossRef Google scholar
[198]
Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol. 2003; 13(12): 648–656.
CrossRef Google scholar
[199]
Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity. 2011; 35(4): 445–455.
CrossRef Google scholar
[200]
Dayoub AS, Brekken RA. TIMs, TAMs, and PS-antibod. targeting: implications for cancer immunotherapy. Cell Commun Signal. 2020; 18(1): 29.
CrossRef Google scholar
[201]
DeRose P, Thorpe PE, Gerber DE. Development of bavituximab, a vascular targeting agent with immune-modulating properties, for lung cancer treatment. Immunotherapy. 2011; 3(8): 933–944.
CrossRef Google scholar
[202]
Hoffman RD, Kligerman M, Sundt TM, Anderson ND, Shin HS. Stereospecific chemoattraction of lymphoblastic cells by gradients of lysophosphatidylcholine. Proc Natl Acad Sci U S A. 1982; 79(10): 3285–3289.
CrossRef Google scholar
[203]
Rolin J, Al-Jaderi Z. Maghazachi AA. Oxidized lipids and lysophosphatidylcholine induce the chemotaxis and intracellular calcium influx in natural killer cells. Immunobiology. 2013; 218(6): 875–883.
CrossRef Google scholar
[204]
Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, et al. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood. 2008; 112(4): 1308–1316.
CrossRef Google scholar
[205]
Kim K-H, Joo J, Park B, Park S-J, Lee WJ, Han S-S, et al. Reduced levels of N’-methyl-2-pyridone-5-carboxamide and lysophosphatidylcholine 16: 0 in the serum of patients with intrahepatic cholangiocarcinoma, and the correlation with recurrence-free survival. Oncotarget. 2017; 8(68): 112598.
CrossRef Google scholar
[206]
Kim SC, Kim MK, Kim YH, Ahn SA, Kim KH, Kim K, et al. Differential levels of L homocysteic acid and lysophosphatidylcholine (16: 0) in sera of patients with ovarian cancer. Oncol Lett. 2014; 8(2): 566–574.
CrossRef Google scholar
[207]
Zhao Z, Xiao Y, Elson P, Tan H, Plummer SJ, Berk M, et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J Clin Oncol. 2007; 25(19): 2696–2701.
CrossRef Google scholar
[208]
Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Chocholoušková M, et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun. 2022; 13(1): 124.
[209]
Zeleznik OA, Clish CB, Kraft P, Avila-Pacheco J. Eliassen AH, Tworoger SS. Circulating Lysophosphatidylcholines, Phosphatidylcholines, Ceramides, and Sphingomyelins and Ovarian Cancer Risk: A 23-Year Prospective Study. J Natl Cancer Inst. 2020; 112(6): 628–636.
CrossRef Google scholar
[210]
Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U. Otto W, et al. Higher plasma levels of lysophosphatidylcholine 18: 0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016; 14(1): 1–9.
CrossRef Google scholar
[211]
Ross T, Jakubzig B, Grundmann M, Massing U, Kostenis E, Schlesinger M, et al. The molecular mechanism by which saturated lysophosphatidylcholine attenuates the metastatic capacity of melanoma cells. FEBS Open Bio. 2016; 6(12): 1297–1309.
CrossRef Google scholar
[212]
Yin M-z, Tan S, Li X, Hou Y, Cao G, Li K, et al. Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study. Tumour Biol. 2016; 37: 5485–5492.
CrossRef Google scholar
[213]
Priolo C, Ricoult SJ, Khabibullin D, Filippakis H, Yu J, Manning BD, et al. Tuberous sclerosis complex 2 loss increases lysophosphatidylcholine synthesis in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2015; 53(1): 33–41.
CrossRef Google scholar
[214]
Shimizu R, Kanno K, Sugiyama A, Ohata H, Araki A, Kishikawa N, et al. Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis. J Hepatobiliary Pancreat Sci. 2015; 22(9): 675–682.
CrossRef Google scholar
[215]
Matsuda A, Yamada M, Matsumoto S, Sakurazawa N, Yamada T, Matsutani T, et al. Lysophosphatidylcholine as a predictor of postoperative complications after colorectal cancer surgery. Surg Today. 2018; 48: 936–943.
CrossRef Google scholar
[216]
Goto T, Terada N, Inoue T, Kobayashi T, Nakayama K, Okada Y, et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate. 2015; 75(16): 1821–1830.
CrossRef Google scholar
[217]
Jantscheff P, Schlesinger M, Fritzsche J, Taylor LA, Graeser R, Kirfel G, et al. Lysophosphatidylcholine pretreatment reduces VLA-4 and P-Selectin–mediated B16. F10 melanoma cell adhesion in vitro and inhibits metastasis-like lung invasion in vivo. Mol Cancer Ther. 2011; 10(1): 186–197.
CrossRef Google scholar
[218]
Raynor A, Jantscheff P, Ross T, Schlesinger M, Wilde M, Haasis S, et al. Saturated and mono-unsaturated lysophosphatidylcholine metabolism in tumour cells: a potential therapeutic target for preventing metastases. Lipids Health Dis. 2015; 14(1): 1–15.
CrossRef Google scholar
[219]
Gaetano CG, Samadi N, Tomsig JL, Macdonald TL, Lynch KR, Brindley DN. Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog. 2009; 48(9): 801–809.
CrossRef Google scholar
[220]
Rapaport E. Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J Cell Physiol. 1983; 114(3): 279–283.
CrossRef Google scholar
[221]
Shabbir M, Thompson C, Jarmulowiczc M, Mikhailidis D, Burnstock G. Effect of extracellular ATP on the growth of hormone-refractory prostate cancer in vivo. BJU Int. 2008; 102(1): 108–112.
CrossRef Google scholar
[222]
Haskell CM, Mendoza E, Pisters KMW, Fossella FV, Figlin RA. Phase II study of intravenous adenosine 5’-triphosphate in patients with previously untreated stage IIIB and Stage IV non-small cell lung cancer. Invest New Drugs. 1998; 16(1): 81–85.
CrossRef Google scholar
[223]
Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP, Rosen CE, et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature. 2020; 583(7817): 609–614.
CrossRef Google scholar
[224]
Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Res. 2010; 70(3): 855–858.
CrossRef Google scholar
[225]
Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal. 2010; 3(125): ra45.
CrossRef Google scholar
[226]
Aswad F, Kawamura H, Dennert G. High Sensitivity of CD4+CD25+ Regulatory T Cells to Extracellular Metabolites Nicotinamide Adenine Dinucleotide and ATP: A Role for P2×7 Receptors1. J Immunol. 2005; 175(5): 3075–3083.
CrossRef Google scholar
[227]
Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, et al. The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J. 2000; 14(15): 2466–2476.
CrossRef Google scholar
[228]
Trabanelli S, Očadlíková D, Gulinelli S, Curti A, Salvestrini V, de Paula Vieira R, et al. Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. J Immunol. 2012; 189(3): 1303–1310.
CrossRef Google scholar
[229]
Schumacher D, Strilic B, Sivaraj Kishor K, Wettschureck N, Offermanns S. Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2Receptor. Cancer Cell. 2013; 24(1): 130–137.
CrossRef Google scholar
[230]
Zhang Y, Gong LH, Zhang HQ, Du Q, You JF, Tian XX, et al. Extracellular ATP enhances in vitro invasion of prostate cancer cells by activating Rho GTPase and upregulating MMPs expression. Cancer Lett. 2010; 293(2): 189–197.
CrossRef Google scholar
[231]
Chakraborty P, Vaena SG, Thyagarajan K, Chatterjee S, Mehrotra S. Pro-Survival Lipid Sphingosine-1-Phosphate Metabolically Programs T Cells to Limit Anti-tumor Activity. Cell Rep. 2019; 28(7): 1879–1893.e7.
CrossRef Google scholar
[232]
Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007; 6(4): 273–286.
CrossRef Google scholar
[233]
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science. 2019; 366(6463): eaar5551.
CrossRef Google scholar
[234]
Cartier A, Leigh T, Liu CH, Hla T. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proc Natl Acad Sci U S A. 2020; 117(6): 3157–3166.
CrossRef Google scholar
[235]
Sciumè G, Soriani A, Piccoli M, Frati L, Santoni A, Bernardini G. CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-β1. Neuro Oncol. 2010; 12(7): 701–710.
CrossRef Google scholar
[236]
Erreni M, Solinas G, Brescia P, Osti D, Zunino F, Colombo P, et al. Human glioblastoma tumours and neural cancer stem cells express the chemokine CX3CL1 and its receptor CX3CR1. Eur J Cancer. 2010; 46(18): 3383–3392.
CrossRef Google scholar
[237]
Lee S, Latha K, Manyam G, Yang Y, Rao A, Rao G. Role of CX3CR1 signaling in malignant transformation of gliomas. Neuro Oncol. 2020; 22(10): 1463–1473.
CrossRef Google scholar
[238]
Tardáguila M, Mira E, García-Cabezas MA, Feijoo AM, Quintela-Fandino M. Azcoitia I, et al. CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer Res. 2013; 73(14): 4461–4473.
CrossRef Google scholar
[239]
Schmall A, Al-Tamari HM. Herold S, Kampschulte M, Weigert A, Wietelmann A, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015; 191(4): 437–447.
CrossRef Google scholar
[240]
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007; 13(1): 54–61.
CrossRef Google scholar
[241]
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010; 29(4): 482–491.
CrossRef Google scholar
[242]
Peters LR, Raghavan M. Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. J Immunol. 2011; 187(2): 919–931.
CrossRef Google scholar
[243]
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo j. 2009; 28(5): 578–590.
CrossRef Google scholar
[244]
Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013; 34(1): 13–21.
CrossRef Google scholar
[245]
Poon IKH, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014; 14(3): 166–180.
CrossRef Google scholar
[246]
Lillis AP, Van Duyn LB, Murphy-Ullrich JE. Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008; 88(3): 887–918.
CrossRef Google scholar
[247]
Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R. Levett A, Sullivan K, et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun. 2018; 9(1): 3194.
CrossRef Google scholar
[248]
Wijeyesakere SJ, Bedi SK, Huynh D, Raghavan M. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis. J Immunol. 2016; 196(9): 3896–3909.
CrossRef Google scholar
[249]
Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem. 2000; 275(46): 36358–36368.
CrossRef Google scholar
[250]
Kishore U, Sontheimer RD, Sastry KN, Zaner KS, Zappi EG, Hughes GR, et al. Release of calreticulin from neutrophils may alter C1q-mediated immune functions. Biochem J. 1997; 322(Pt 2): 543–550.
CrossRef Google scholar
[251]
Ma Y, Adjemian S, Mattarollo Stephen R, Yamazaki T, Aymeric L, Yang H, et al. Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity. 2013; 38(4): 729–741.
CrossRef Google scholar
[252]
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. Int Rev Cell Mol Biol. 2019; 348: 217–262.
CrossRef Google scholar
[253]
Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019; 572(7769): 392–396.
CrossRef Google scholar
[254]
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019; 25(4): 656–666.
CrossRef Google scholar
[255]
Morrissey MA, Kern N, Vale RD. CD47 Ligation Repositions the Inhibitory Receptor SIRPA to Suppress Integrin Activation and Phagocytosis. Immunity. 2020; 53(2): 290–302.e6.
CrossRef Google scholar
[256]
Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018; 379(15): 1416–1430.
CrossRef Google scholar
[257]
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369(25): 2391–2405.
[258]
Imai M, Araki M, Komatsu N. Somatic mutations of calreticulin in myeloproliferative neoplasms. Int J Hematol. 2017; 105(6): 743–747.
CrossRef Google scholar
[259]
Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018; 131(7): 782–786.
CrossRef Google scholar
[260]
Liu P, Zhao L, Loos F, Marty C, Xie W, Martins I, et al. Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Mol Cell. 2020; 77(4): 748–760.e9.
CrossRef Google scholar
[261]
Chachoua I, Pecquet C, El-Khoury M. Nivarthi H, Albu R-I, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016; 127(10): 1325–1335.
CrossRef Google scholar
[262]
Kroemer G, Zitvogel L. Subversion of calreticulin exposure as a strategy of immune escape. Cancer Cell. 2021; 39(4): 449–451.
CrossRef Google scholar
[263]
Lin H, Kryczek I, Li S, Green MD, Ali A, Hamasha R, et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021; 39(4): 480–493.e6.
CrossRef Google scholar
[264]
Dong Z, Davidson D, Pérez-Quintero Luis A, Kurosaki T, Swat W, Veillette A. The Adaptor SAP Controls NK Cell Activation by Regulating the Enzymes Vav-1 and SHIP-1 and by Enhancing Conjugates with Target Cells. Immunity. 2012; 36(6): 974–985.
CrossRef Google scholar
[265]
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61.
CrossRef Google scholar
[266]
Beyer M, Mallmann MR, Xue J, Staratschek-Jox A. Vorholt D, Krebs W, et al. High-resolution transcriptome of human macrophages. PLoS One. 2012; 7(9): e45466.
CrossRef Google scholar
[267]
He Y, Bouwstra R, Wiersma VR, de Jong M, Jan Lourens H, Fehrmann R, et al. Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nat Commun. 2019; 10(1): 533.
CrossRef Google scholar
[268]
Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat Nanotechnol. 2022; 17(12): 1332–1341.
CrossRef Google scholar
[269]
Kikuchi J, Hori M, Iha H, Toyama-Sorimachi N. Hagiwara S, Kuroda Y, et al. Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia. 2020; 34(1): 180–195.
CrossRef Google scholar
[270]
Pazina T, James AM, Colby KB, Yang Y, Gale A, Jhatakia A, et al. Enhanced SLAMF7 Homotypic Interactions by Elotuzumab Improves NK Cell Killing of Multiple Myeloma. Cancer Immunol Res. 2019; 7(10): 1633–1646.
CrossRef Google scholar
[271]
Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008; 14(9): 2775–2784.
CrossRef Google scholar
[272]
Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. Signaling by Antibodies: Recent Progress. Annu Rev Immunol. 2017; 35(1): 285–311.
CrossRef Google scholar
[273]
Mimura Y, Katoh T, Saldova R, O’Flaherty R, Izumi T, Mimura-Kimura Y. et al. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell. 2018; 9(1): 47–62.
CrossRef Google scholar
[274]
Kaneko Y, Nimmerjahn F, Ravetch J. Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation. Science. 2006; 313: 670–673.
CrossRef Google scholar
[275]
Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Adv Exp Med Biol. 2011; 780: 113–124.
CrossRef Google scholar
[276]
Lee CH, Romain G, Yan W, Watanabe M, Charab W, Todorova B, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol. 2017; 18(8): 889–898.
CrossRef Google scholar
[277]
Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, et al. Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Mol Cancer Ther. 2018; 17(7): 1454–1463.
CrossRef Google scholar
[278]
Kamen L, Myneni S, Langsdorf C, Kho E, Ordonia B, Thakurta T, et al. A novel method for determining antibody-dependent cellular phagocytosis. J Immunol Methods. 2019; 468: 55–60.
CrossRef Google scholar
[279]
Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014; 15(8): 707–716.
CrossRef Google scholar
[280]
Regnault A, Lankar D, Lacabanne V, Rodriguez A, Théry C, Rescigno M, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med. 1999; 189(2): 371–380.
CrossRef Google scholar
[281]
Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med. 2002; 195(1): 125–133.
CrossRef Google scholar
[282]
Schuurhuis DH, van Montfoort N, Ioan-Facsinay A. Jiawan R, Camps M, Nouta J, et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol. 2006; 176(8): 4573–4580.
CrossRef Google scholar
[283]
Diaz de Ståhl T, Heyman B. IgG2a-mediated enhancement of antibody responses is dependent on FcRgamma+ bone marrow-derived cells. Scand J Immunol. 2001; 54(5): 495–500.
CrossRef Google scholar
[284]
Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000; 6(4): 443–446.
CrossRef Google scholar
[285]
Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004; 199(12): 1659–1669.
CrossRef Google scholar
[286]
Bibeau F, Lopez-Crapez E. Di Fiore F, Thezenas S, Ychou M, Blanchard F, et al. Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol. 2009; 27(7): 1122–1129.
CrossRef Google scholar
[287]
Chow A, Schad S, Green MD, Hellmann MD, Allaj V, Ceglia N, et al. Tim-4(+) cavity-resident macrophages impair anti-tumor CD8(+) T cell immunity. Cancer Cell. 2021; 39(7): 973–988.e9.
CrossRef Google scholar
[288]
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021; 27(1): 152–164.
[289]
Wang W, Wu S, Cen Z, Zhang Y, Chen Y, Huang Y, et al. Mobilizing phospholipids on tumor plasma membrane implicates phosphatidylserine externalization blockade for cancer immunotherapy. Cell Rep. 2022; 41(5): 111582.
CrossRef Google scholar
[290]
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009; 15(10): 1170–1178.
CrossRef Google scholar
[291]
Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle. 2009; 8(22): 3723–3728.
CrossRef Google scholar
[292]
Klysz DD, Fowler C, Malipatlolla M, Stuani L, Freitas KA, Chen Y, et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell. 2024; 42(2): 266–282.e8.
CrossRef Google scholar
[293]
Janneh AH, Kassir MF, Atilgan FC, Lee HG, Sheridan M, Oleinik N, et al. Crosstalk between pro-survival sphingolipid metabolism and complement signaling induces inflammasome-mediated tumor metastasis. Cell Rep. 2022; 41(10): 111742.
CrossRef Google scholar
[294]
Gupta P, Kadamberi IP, Mittal S, Tsaih SW, George J, Kumar S, et al. Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. Adv Sci (Weinh). 2022; 9(14): e2104452.
CrossRef Google scholar
[295]
Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014; 135(5): 1165–1177.
CrossRef Google scholar
[296]
De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019; 5(1): 13.
CrossRef Google scholar
[297]
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. Med Comm (2020). 2023; 4(1): e203.
CrossRef Google scholar
[298]
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019; 10(1): 3349.
CrossRef Google scholar
[299]
Duewell P, Steger A, Lohr H, Bourhis H, Hoelz H, Kirchleitner SV, et al. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8(+) T cells. Cell Death Differ. 2014; 21(12): 1825–1837.
CrossRef Google scholar
[300]
Bian M, Fan R, Yang Z, Chen Y, Xu Z, Lu Y, et al. Pt(II)-NHC Complex Induces ROS-ERS-Related DAMP Balance to Harness Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem. 2022; 65(3): 1848–1866.
CrossRef Google scholar
[301]
Lin AG, Xiang B, Merlino DJ, Baybutt TR, Sahu J, Fridman A, et al. Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology. 2018; 7(9): e1484978.
CrossRef Google scholar
[302]
Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge JC, et al. Nano-Pulse Stimulation is a physical modality that can trigger immunogenic tumor cell death. J Immunother Cancer. 2017; 5: 32.
CrossRef Google scholar
[303]
Gogishvili T, Danhof S, Prommersberger S, Rydzek J, Schreder M, Brede C, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood. 2017; 130(26): 2838–2847.
CrossRef Google scholar
[304]
O’Neal J, Ritchey JK, Cooper ML, Niswonger J, Sofía González L, Street E, et al. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells. Leukemia. 2022; 36(6): 1625–1634.
CrossRef Google scholar
[305]
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023; 18(2): 193–204.
CrossRef Google scholar
[306]
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, et al. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8(+) T Cell Responses. Immunity. 2019; 50(3): 738–750.e7.
CrossRef Google scholar
[307]
Häusler SFM, Montalbán del Barrio I, Strohschein J, Anoop Chandran P, Engel JB, Hönig A, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother. 2011; 60(10): 1405–1418.
CrossRef Google scholar
[308]
Schmitt M, Ceteci F, Gupta J, Pesic M, Böttger TW, Nicolas AM, et al. Colon tumour cell death causes mTOR dependence by paracrine P2×4 stimulation. Nature. 2022; 612(7939): 347–353.
CrossRef Google scholar
[309]
Gupta P, Kadamberi IP, Mittal S, Tsaih S-W, George J, Kumar S, et al. Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. Adv Sci (Weinh). 2022; 9(14): e2104452.
CrossRef Google scholar
[310]
Yi L, Liang Y, Zhao Q, Wang H, Dong J. CX3CL1 Induces Vertebral Microvascular Barrier Dysfunction via the Src/P115-RhoGEF/ROCK Signaling Pathway. Front Cell Neurosci. 2020; 14: 96.
CrossRef Google scholar
[311]
Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 2014; 124(5): 2023–2036.
CrossRef Google scholar
[312]
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020; 11(11): 1013.
CrossRef Google scholar
[313]
Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. Acs Nano. 2020; 14(4): 4816–4828.
CrossRef Google scholar
[314]
Mei K-C, Liao Y-P, Jiang J, Chiang M, Khazaieli M, Liu X, et al. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS nano. 2020; 14(10): 13343–13366.
CrossRef Google scholar
[315]
Kwon S, Meng F, Tamam H, Gadalla HH, Wang J, Dong B, et al. Systemic Delivery of Paclitaxel by Find-Me Nanoparticles Activates Antitumor Immunity and Eliminates Tumors. ACS Nano. 2024; 18(4): 3681–3698.
CrossRef Google scholar
[316]
Sarkar A, Novohradsky V, Maji M, Babu T, Markova L, Kostrhunova H, et al. Multitargeting Prodrugs that Release Oxaliplatin, Doxorubicin and Gemcitabine are Potent Inhibitors of Tumor Growth and Effective Inducers of Immunogenic Cell Death. Angew Chem Int Ed Engl. 2023; 62(42): e202310774.
CrossRef Google scholar
[317]
Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013; 24(4): 319–333.
CrossRef Google scholar
[318]
Nawrocki ST, Carew JS, Dunner K, Jr., Boise LH, Chiao PJ, Huang P, et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res. 2005; 65(24): 11510–11519.
CrossRef Google scholar
[319]
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003; 3(5): 330–338.
CrossRef Google scholar
[320]
Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, et al. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials. 2020; 230: 119649.
CrossRef Google scholar
[321]
Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol. 2017; 125: 1–11.
CrossRef Google scholar
[322]
Dudek-Perić AM, Ferreira GB, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor Immunity Triggered by Melphalan Is Potentiated by Melanoma Cell Surface–Associated Calreticulin. Cancer Res. 2015; 75(8): 1603–1614.
CrossRef Google scholar
[323]
Liu Z, Zhang HM, Yuan J, Ye X, Taylor GA, Yang D. The immunity-related GTPase Irgm3 relieves endoplasmic reticulum stress response during coxsackievirus B3 infection via a PI3K/Akt dependent pathway. Cell Microbiol. 2012; 14(1): 133–146.
CrossRef Google scholar
[324]
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011; 61(4): 250–281.
CrossRef Google scholar
[325]
Kielbik M, Szulc-Kielbik I. Klink M. Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients. Cells. 2021; 10(1): 130.
CrossRef Google scholar
[326]
Zhou H, Forveille S, Sauvat A, Yamazaki T, Senovilla L, Ma Y, et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 2016; 7(3): e2134.
CrossRef Google scholar
[327]
Pasquereau-Kotula E, Habault J, Kroemer G, Poyet JL. The anticancer peptide RT53 induces immunogenic cell death. PLoS One. 2018; 13(8): e0201220.
CrossRef Google scholar
[328]
Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, et al. Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS Nano. 2018; 12(8): 8633–8645.
CrossRef Google scholar
[329]
Raines LN, Zhao H, Wang Y, Chen HY, Gallart-Ayala H. Hsueh PC, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol. 2022; 23(3): 431–445.
CrossRef Google scholar
[330]
Sun D, Cao M, Li H, He S, Chen W. Cancer burden and trends in China: A review and comparison with Japan and South Korea. Chin J Cancer Res. 2020; 32(2): 129–139.
CrossRef Google scholar
[331]
Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol. 2020; 10: 188.
CrossRef Google scholar
[332]
Lin W-D, Fan T-C, Hung JT, Yeo H-L, Wang S-H. Kuo C-W, et al. Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer. Cancer Immunol Res. 2021; 9(1): 113–122.
CrossRef Google scholar
[333]
Tai Y-T, Dillon M, Song W, Leiba M, Li X-F, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008; 112(4): 1329–1337.
CrossRef Google scholar
[334]
Barnhart BC, Quigley M. Role of Fc-FcγR interactions in the antitumor activity of therapeutic antibodies. Immunol Cell Biol. 2017; 95(4): 340–346.
CrossRef Google scholar
[335]
Olafsen T, Kenanova VE, Wu AM. Tunable pharmacokinetics: modifying the in vivo half-life of antibodies by directed mutagenesis of the Fc fragment. Nat Protoc. 2006; 1(4): 2048–2060.
CrossRef Google scholar
[336]
Wu AM, Tan GJ, Sherman MA, Clarke P, Olafsen T, Forman SJ, et al. Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng. 2001; 14(12): 1025–1033.
CrossRef Google scholar
[337]
Weng WK, Negrin RS, Lavori P, Horning SJ. Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 2010; 28(2): 279–284.
CrossRef Google scholar
[338]
Dooling LJ, Andrechak JC, Hayes BH, Kadu S, Zhang W, Pan R, et al. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat Biomed Eng. 2023; 7(9): 1081–1096.
CrossRef Google scholar
[339]
Veillette A, Chen J. SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 2018; 39(3): 173–184.
CrossRef Google scholar
[340]
Logtenberg ME, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020; 52(5): 742–752.
CrossRef Google scholar
[341]
Eladl E, Tremblay-LeMay R. Rastgoo N, Musani R, Chen W, Liu A, et al. Role of CD47 in hematological malignancies. J Hematol Oncol. 2020; 13: 1–14.
CrossRef Google scholar
[342]
Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018; 19(1): 76–84.
CrossRef Google scholar
[343]
Zhao J, Zhong S, Niu X, Jiang J, Zhang R, Li Q. The MHC class I-LILRB1 signalling axis as a promising target in cancer therapy. Scand J Immunol. 2019; 90(5): e12804.
CrossRef Google scholar
[344]
Chen H-M, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest. 2018; 128(12): 5647–5662.
CrossRef Google scholar
[345]
Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019; 572(7769): 392–396.
CrossRef Google scholar
[346]
Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol. 2022; 15(1): 110.
CrossRef Google scholar
[347]
Uger R, Johnson L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy. Expert Opin Biol Ther. 2020; 20(1): 5–8.
CrossRef Google scholar
[348]
Upton R, Banuelos A, Feng D, Biswas T, Kao K, McKenna K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc Natl Acad Sci U S A. 2021; 118(29): e2026849118.
CrossRef Google scholar
[349]
Mehta A, Harb W, Xu C, Meng Y, Lee L, Yuan V, et al. Lemzoparlimab, a differentiated anti-cd47 antibody in combination with rituximab in relapsed and refractory non-Hodgkin’s lymphoma: initial clinical results. Blood. 2021; 138: 3542.
CrossRef Google scholar
[350]
Cao X, Wang Y, Zhang W, Zhong X, Gunes EG, Dang J, et al. Targeting macrophages for enhancing CD47 blockade–elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood, J Am Soc Hematol. 2022; 139(22): 3290–3302.
CrossRef Google scholar
[351]
Theruvath J, Menard M, Smith BA, Linde MH, Coles GL, Dalton GN, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med. 2022; 28(2): 333–344.
CrossRef Google scholar
[352]
Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PloS one. 2015; 10(9): e0137345.
CrossRef Google scholar
[353]
Fisher GA, Lakhani NJ, Eng C, Hecht JR, Bendell JC, Philip PA, et al. A phase Ib/II study of the anti-CD47 antibody magrolimab with cetuximab in solid tumor and colorectal cancer patients. J CLIN ONCOL. 2020; 38(4_suppl): 114.
CrossRef Google scholar
[354]
Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med. 2018; 379(18): 1711–1721.
CrossRef Google scholar
[355]
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol. 2023; 23(2): 106–120.
CrossRef Google scholar
[356]
Kamber RA, Nishiga Y, Morton B, Banuelos AM, Barkal AA, Vences-Catalán F, et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature. 2021; 597(7877): 549–554.
CrossRef Google scholar
[357]
Li G, Jiang Y, Qin Y, Yuan S, Chen X. Comparing development strategies for PD1/PDL1-based immunotherapies. Nat Rev Drug Discov. 2022; 21(7): 484.
CrossRef Google scholar
[358]
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8(+) T cells. Semin Cancer Biol. 2022; 86(Pt 2): 1045–1055.
CrossRef Google scholar
[359]
Strauss L, Mahmoud MA, Weaver JD, Tijaro-Ovalle NM. Christofides A, Wang Q, et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol. 2020; 5(43): eaay1863.
CrossRef Google scholar
[360]
Yang R, Sun L, Li C-F, Wang Y-H. Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021; 12(1): 832.
CrossRef Google scholar
[361]
Wang X, Wang G, Wang Z, Liu B, Han N, Li J, et al. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway. Mol Immunol. 2019; 109: 20–26.
CrossRef Google scholar
[362]
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault M-C, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018; 128(10): 4654–4668.
CrossRef Google scholar
[363]
Lim TS, Chew V, Sieow JL, Goh S, Yeong JP-S, Soon AL, et al. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016; 5(3): e1085146.
CrossRef Google scholar
[364]
Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell. 2015; 162(6): 1242–1256.
CrossRef Google scholar
[365]
He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Sci Rep. 2015; 5: 13110.
CrossRef Google scholar
[366]
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022; 15(1): 24.
CrossRef Google scholar
[367]
Reinke S, Bröckelmann PJ, Iaccarino I, Garcia-Marquez M. Borchmann S, Jochims F, et al. Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood. 2020; 136(25): 2851–2863.
CrossRef Google scholar
[368]
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016; 375(19): 1823–1833.
CrossRef Google scholar
[369]
Weinstock C, Khozin S, Suzman D, Zhang L, Tang S, Wahby S, et al. US Food and Drug Administration approval summary: atezolizumab for metastatic non–small cell lung cancer. Clin Cancer Res. 2017; 23(16): 4534–4539.
CrossRef Google scholar
[370]
Mok T, Wu Y-L, Sadowski S, Zhang J, Rangwala R, de Lima Lopes G. 481TiP Pembrolizumab (MK-3475) versus platinum-based chemotherapy for PD-L1+ non-small cell lung cancer (NSCLC): Randomized, open-label, phase 3 KEYNOTE-042 study. ANN ONCOL. 2015; 26: ix125.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Cancer Communications published by John Wiley & Sons Australia, Ltd on behalf of Sun Yat-sen University Cancer Center.
PDF

Accesses

Citations

Detail

Sections
Recommended

/