
Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors
Yuze Wu, Ming Yi, Mengke Niu, Binghan Zhou, Qi Mei, Kongming Wu
Cancer Communications ›› 2024, Vol. 44 ›› Issue (07) : 739-760.
Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
immunotherapy / radiotherapy / immune checkpoint inhibitor / abscopal effect / tumor microenvironment
[1] |
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020; 17(8): 807–21.
CrossRef
Google scholar
|
[2] |
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711–23.
|
[3] |
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016; 375(19): 1823–33.
CrossRef
Google scholar
|
[4] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4): 252–64.
CrossRef
Google scholar
|
[5] |
Ferris RL, Blumenschein G, Jr., Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016; 375(19): 1856–67.
CrossRef
Google scholar
|
[6] |
Yang K, Halima A, Chan TA. Antigen presentation in cancer -mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol. 2023; 20(9): 604–23.
CrossRef
Google scholar
|
[7] |
Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, et al. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol. 2023; 12(1): 10.
CrossRef
Google scholar
|
[8] |
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019; 18(3): 197–218.
CrossRef
Google scholar
|
[9] |
Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov. 2021; 20(12): 899–919.
CrossRef
Google scholar
|
[10] |
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022; 21(1): 28.
CrossRef
Google scholar
|
[11] |
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol. 2023; 16(1): 38.
CrossRef
Google scholar
|
[12] |
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022; 15(1): 24.
CrossRef
Google scholar
|
[13] |
Grassberger C, Ellsworth SG, Wilks MQ, Keane FK, Loeffler JS. Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol. 2019; 16(12): 729–45.
CrossRef
Google scholar
|
[14] |
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018; 18(5): 313–22.
CrossRef
Google scholar
|
[15] |
Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol. 2017; 35(1): 56–62.
CrossRef
Google scholar
|
[16] |
Thariat J, Hannoun-Levi JM. Sun Myint A, Vuong T, Gérard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013; 10(1): 52–60.
CrossRef
Google scholar
|
[17] |
Bortfeld TR, Loeffler JS. Three ways to make proton therapy affordable. Nature. 2017; 549(7673): 451–3.
CrossRef
Google scholar
|
[18] |
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond). 2019; 39(1): 61.
CrossRef
Google scholar
|
[19] |
Demaria S, Bhardwaj N, McBride WH, Formenti SC. Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys. 2005; 63(3): 655–66.
CrossRef
Google scholar
|
[20] |
Bernstein MB, Krishnan S, Hodge JW, Chang JY. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol. 2016; 13(8): 516–24.
CrossRef
Google scholar
|
[21] |
Brooks ED, Chang JY. Time to abandon single-site irradiation for inducing abscopal effects. Nat Rev Clin Oncol. 2019; 16(2): 123–35.
CrossRef
Google scholar
|
[22] |
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015; 372(21): 2018–28.
CrossRef
Google scholar
|
[23] |
Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. The lancet oncology. 2017; 18(7): 895–903.
CrossRef
Google scholar
|
[24] |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N Engl J Med. 2018; 379(24): 2342–50.
CrossRef
Google scholar
|
[25] |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017; 377(20): 1919–29.
|
[26] |
Spigel DR, Faivre-Finn C. Gray JE, Vicente D, Planchard D, Paz-Ares L. et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J Clin Oncol. 2022; 40(12): 1301–11.
CrossRef
Google scholar
|
[27] |
Girard N, Bar J, Garrido P, Garassino MC, McDonald F, Mornex F, et al. Treatment Characteristics and Real-World Progression-Free Survival in Patients With Unresectable Stage III NSCLC Who Received Durvalumab After Chemoradiotherapy: Findings From the PACIFIC-R Study. J Thorac Oncol. 2023; 18(2): 181–93.
CrossRef
Google scholar
|
[28] |
Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015; 16(13): e498–509.
CrossRef
Google scholar
|
[29] |
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 2019; 11(1): 40.
CrossRef
Google scholar
|
[30] |
Herrera FG, Irving M, Kandalaft LE, Coukos G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 2019; 20(8): e417–e33.
CrossRef
Google scholar
|
[31] |
Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 2017; 67(1): 65–85.
CrossRef
Google scholar
|
[32] |
Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, et al. Ferroptosis: a novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol. 2023; 12(1): 65.
CrossRef
Google scholar
|
[33] |
Chang MC, Chen YL, Lin HW, Chiang YC, Chang CF, Hsieh SF, et al. Irradiation Enhances Abscopal Anti-tumor Effects of Antigen-Specific Immunotherapy through Regulating Tumor Microenvironment. Mol Ther. 2018; 26(2): 404–19.
CrossRef
Google scholar
|
[34] |
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007; 13(9): 1050–9.
CrossRef
Google scholar
|
[35] |
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009; 461(7261): 282–6.
CrossRef
Google scholar
|
[36] |
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. J Exp Clin Cancer Res. 2022; 41(1): 222.
CrossRef
Google scholar
|
[37] |
Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000; 192(4): 565–70.
CrossRef
Google scholar
|
[38] |
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Theranostics. 2019; 9(5): 1215–31.
CrossRef
Google scholar
|
[39] |
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007; 13(1): 54–61.
CrossRef
Google scholar
|
[40] |
Surace L, Lysenko V, Fontana AO, Cecconi V, Janssen H, Bicvic A, et al. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity. 2015; 42(4): 767–77.
CrossRef
Google scholar
|
[41] |
Fucikova J, Spisek R, Kroemer G, Galluzzi L. Calreticulin and cancer. Cell Res. 2021; 31(1): 5–16.
CrossRef
Google scholar
|
[42] |
Dillon MT, Bergerhoff KF, Pedersen M, Whittock H, Crespo-Rodriguez E. Patin EC, et al. ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment. Clin Cancer Res. 2019; 25(11): 3392–403.
CrossRef
Google scholar
|
[43] |
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006; 203(5): 1259–71.
CrossRef
Google scholar
|
[44] |
Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, et al. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol Res. 2015; 3(4): 345–55.
CrossRef
Google scholar
|
[45] |
Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009; 114(3): 589–95.
CrossRef
Google scholar
|
[46] |
Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012; 189(2): 558–66.
CrossRef
Google scholar
|
[47] |
Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010; 70(7): 2697–706.
CrossRef
Google scholar
|
[48] |
Huang Q, Wang F, Hao D, Li X, Li X, Lei T, et al. Deciphering tumor-infiltrating dendritic cells in the single-cell era. Exp Hematol Oncol. 2023; 12(1): 97.
CrossRef
Google scholar
|
[49] |
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022; 11(1): 3.
CrossRef
Google scholar
|
[50] |
Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity. 2014; 41(5): 843–52.
CrossRef
Google scholar
|
[51] |
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015; 11(7): 1018–30.
CrossRef
Google scholar
|
[52] |
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol. 2022; 18(9): 558–72.
CrossRef
Google scholar
|
[53] |
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020; 21(9): 501–21.
CrossRef
Google scholar
|
[54] |
Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer biotherapy. Mol Cancer. 2020; 19(1): 136.
CrossRef
Google scholar
|
[55] |
Hou Y, Liang H, Rao E, Zheng W, Huang X, Deng L, et al. Non-canonical NF-κB Antagonizes STING Sensor-Mediated DNA Sensing in Radiotherapy. Immunity. 2018; 49(3): 490–503.e4.
CrossRef
Google scholar
|
[56] |
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017; 8: 15618.
CrossRef
Google scholar
|
[57] |
Donlon NE, Power R, Hayes C, Reynolds JV, Lysaght J. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 2021; 502: 84–96.
CrossRef
Google scholar
|
[58] |
Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017; 14(6): 365–79.
CrossRef
Google scholar
|
[59] |
Meng Y, Mauceri HJ, Khodarev NN, Darga TE, Pitroda SP, Beckett MA, et al. Ad.Egr-TNF and local ionizing radiation suppress metastases by interferon-beta-dependent activation of antigen-specific CD8+ T cells. Mol Ther. 2010; 18(5): 912–20.
CrossRef
Google scholar
|
[60] |
Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008; 181(5): 3099–107.
CrossRef
Google scholar
|
[61] |
Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res. 2010; 173(4): 418–25.
CrossRef
Google scholar
|
[62] |
McLaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer. 2020; 20(4): 203–17.
CrossRef
Google scholar
|
[63] |
Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 2022; 11(1): 24.
CrossRef
Google scholar
|
[64] |
Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022; 15(1): 61.
CrossRef
Google scholar
|
[65] |
Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 2018; 24(12): 1845–51.
CrossRef
Google scholar
|
[66] |
Pilones KA, Kawashima N, Yang AM, Babb JS, Formenti SC, Demaria S. Invariant natural killer T cells regulate breast cancer response to radiation and CTLA-4 blockade. Clin Cancer Res. 2009; 15(2): 597–606.
CrossRef
Google scholar
|
[67] |
Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica BJ, et al. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin Cancer Res. 2018; 24(20): 5058–71.
CrossRef
Google scholar
|
[68] |
Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 2015; 16(10): 1060–8.
CrossRef
Google scholar
|
[69] |
Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013; 73(9): 2782–94.
CrossRef
Google scholar
|
[70] |
Merrick A, Errington F, Milward K, O’Donnell D, Harrington K, Bateman A, et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer. 2005; 92(8): 1450–8.
CrossRef
Google scholar
|
[71] |
Balogh A, Persa E, Bogdándi EN, Benedek A, Hegyesi H, Sáfrány G, et al. The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells. Inflamm Res. 2013; 62(2): 201–12.
CrossRef
Google scholar
|
[72] |
Wang M, Gou X, Wang L. Protein kinase B promotes radiation-induced regulatory T cell survival in bladder carcinoma. Scand J Immunol. 2012; 76(1): 70–4.
CrossRef
Google scholar
|
[73] |
Malecka A, Wang Q, Shah S, Sutavani RV, Spendlove I, Ramage JM, et al. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation. J Leukoc Biol. 2016; 100(2): 381–9.
CrossRef
Google scholar
|
[74] |
Battaglia A, Buzzonetti A, Martinelli E, Fanelli M, Petrillo M, Ferrandina G, et al. Selective changes in the immune profile of tumor-draining lymph nodes after different neoadjuvant chemoradiation regimens for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010; 76(5): 1546–53.
CrossRef
Google scholar
|
[75] |
Rudqvist NP, Charpentier M, Lhuillier C, Wennerberg E, Spada S, Sheridan C, et al. Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors. Nat Commun. 2023; 14(1): 5146.
CrossRef
Google scholar
|
[76] |
Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022; 21(8): 559–77.
CrossRef
Google scholar
|
[77] |
Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2023; 23(2): 90–105.
CrossRef
Google scholar
|
[78] |
Kim JY, Son YO, Park SW, Bae JH, Chung JS, Kim HH, et al. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med. 2006; 38(5): 474–84.
CrossRef
Google scholar
|
[79] |
Ames E, Canter RJ, Grossenbacher SK, Mac S, Smith RC, Monjazeb AM, et al. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. Oncoimmunology. 2015; 4(9): e1036212.
CrossRef
Google scholar
|
[80] |
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61.
CrossRef
Google scholar
|
[81] |
Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 2023; 23(4): 238–57.
CrossRef
Google scholar
|
[82] |
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, et al. Exploiting innate immunity for cancer immunotherapy. Mol Cancer. 2023; 22(1): 187.
CrossRef
Google scholar
|
[83] |
Wang L, He T, Liu J, Tai J, Wang B, Chen Z, et al. Pan-cancer analysis reveals tumor-associated macrophage communication in the tumor microenvironment. Exp Hematol Oncol. 2021; 10(1): 31.
CrossRef
Google scholar
|
[84] |
Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol. 2023; 20(9): 983–92.
CrossRef
Google scholar
|
[85] |
Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022; 19(6): 402–21.
CrossRef
Google scholar
|
[86] |
Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011; 12(3): 231–8.
CrossRef
Google scholar
|
[87] |
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021; 10(1): 60.
CrossRef
Google scholar
|
[88] |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS⁺/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013; 24(5): 589–602.
CrossRef
Google scholar
|
[89] |
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C. Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol. 2018; 29(2): 301–10.
CrossRef
Google scholar
|
[90] |
Meng Y, Beckett MA, Liang H, Mauceri HJ, van Rooijen N, Cohen KS, et al. Blockade of tumor necrosis factor alpha signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res. 2010; 70(4): 1534–43.
CrossRef
Google scholar
|
[91] |
Raffin C, Vo LT, Bluestone JA. T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020; 20(3): 158–72.
CrossRef
Google scholar
|
[92] |
Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression -implications for anticancer therapy. Nat Rev Clin Oncol. 2019; 16(6): 356–71.
CrossRef
Google scholar
|
[93] |
Goral A, Sledz M, Manda-Handzlik A. Cieloch A, Wojciechowska A, Lachota M, et al. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol. 2023; 12(1): 89.
CrossRef
Google scholar
|
[94] |
Persa E, Balogh A, Sáfrány G, Lumniczky K. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett. 2015; 368(2): 252–61.
CrossRef
Google scholar
|
[95] |
Mondini M, Loyher PL, Hamon P, Gerbé de Thoré M, Laviron M, Berthelot K, et al. CCR2-Dependent Recruitment of Tregs and Monocytes Following Radiotherapy Is Associated with TNFα-Mediated Resistance. Cancer Immunol Res. 2019; 7(3): 376–87.
CrossRef
Google scholar
|
[96] |
Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JJ, Agazaryan N, Economou JS, et al. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys. 2011; 81(4): 1128–35.
CrossRef
Google scholar
|
[97] |
Bos PD, Plitas G, Rudra D, Lee SY, Rudensky AY. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med. 2013; 210(11): 2435–66.
CrossRef
Google scholar
|
[98] |
Wu Y, Yi M, Niu M, Mei Q, Wu K. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer. 2022; 21(1): 184.
CrossRef
Google scholar
|
[99] |
Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity. 2021; 54(5): 875–84.
CrossRef
Google scholar
|
[100] |
Cheng X, Wang H, Wang Z, Zhu B, Long H. Tumor-associated myeloid cells in cancer immunotherapy. J Hematol Oncol. 2023; 16(1): 71.
CrossRef
Google scholar
|
[101] |
Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, et al. Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clin Cancer Res. 2015; 21(16): 3727–39.
CrossRef
Google scholar
|
[102] |
Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2017; 23(1): 137–48.
CrossRef
Google scholar
|
[103] |
Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 2017; 8(1): 1736.
CrossRef
Google scholar
|
[104] |
Wang L, Dou X, Chen S, Yu X, Huang X, Zhang L, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023; 41(7): 1294–308.e8.
CrossRef
Google scholar
|
[105] |
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014; 124(2): 687–95.
CrossRef
Google scholar
|
[106] |
Dovedi SJ, Adlard AL, Lipowska-Bhalla G. McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014; 74(19): 5458–68.
CrossRef
Google scholar
|
[107] |
Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol. 2022; 11(1): 44.
CrossRef
Google scholar
|
[108] |
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021; 14(1): 10.
CrossRef
Google scholar
|
[109] |
Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012; 366(10): 925–31.
CrossRef
Google scholar
|
[110] |
Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol. 2012; 5(6): 404–7.
CrossRef
Google scholar
|
[111] |
Karam SD, Raben D. Radioimmunotherapy for the treatment of head and neck cancer. Lancet Oncol. 2019; 20(8): e404–e16.
CrossRef
Google scholar
|
[112] |
Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019; 20(8): e452–e63.
CrossRef
Google scholar
|
[113] |
Chandra RA, Keane FK, Voncken FEM, Thomas CR, Jr. Contemporary radiotherapy: present and future. Lancet. 2021; 398(10295): 171–84.
CrossRef
Google scholar
|
[114] |
Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010; 303(11): 1070–6.
CrossRef
Google scholar
|
[115] |
Chaft JE, Rimner A, Weder W, Azzoli CG, Kris MG, Cascone T. Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 2021; 18(9): 547–57.
CrossRef
Google scholar
|
[116] |
Timmerman RD, Hu C, Michalski JM, Bradley JC, Galvin J, Johnstone DW, et al. Long-term Results of Stereotactic Body Radiation Therapy in Medically Inoperable Stage I Non-Small Cell Lung Cancer. JAMA Oncol. 2018; 4(9): 1287–8.
CrossRef
Google scholar
|
[117] |
Videtic GM, Paulus R, Singh AK, Chang JY, Parker W, Olivier KR, et al. Long-term Follow-up on NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2019; 103(5): 1077–84.
|
[118] |
Schneiders FL, Senan S. Finding the Goldilocks zone in neoadjuvant radioimmunotherapy. Nat Rev Clin Oncol. 2021; 18(9): 545–6.
CrossRef
Google scholar
|
[119] |
Altorki NK, McGraw TE, Borczuk AC, Saxena A, Port JL, Stiles BM, et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 2021; 22(6): 824–35.
CrossRef
Google scholar
|
[120] |
Chang JY, Lin SH, Dong W, Liao Z, Gandhi SJ, Gay CM, et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet. 2023; 402(10405): 871–81.
CrossRef
Google scholar
|
[121] |
Wu TC, Stube A, Felix C, Oseguera D, Romero T, Goldman J, et al. Safety and Efficacy Results From iSABR, a Phase 1 Study of Stereotactic ABlative Radiotherapy in Combination With Durvalumab for Early-Stage Medically Inoperable Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2023; 117(1): 118–22.
CrossRef
Google scholar
|
[122] |
Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995; 13(1): 8–10.
CrossRef
Google scholar
|
[123] |
Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011; 8(6): 378–82.
CrossRef
Google scholar
|
[124] |
Corbin KS, Hellman S, Weichselbaum RR. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J Clin Oncol. 2013; 31(11): 1384–90.
CrossRef
Google scholar
|
[125] |
Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013; 14(1): e28–37.
CrossRef
Google scholar
|
[126] |
Iyengar P, Wardak Z, Gerber DE, Tumati V, Ahn C, Hughes RS, et al. Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018; 4(1): e173501.
CrossRef
Google scholar
|
[127] |
Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet. 2019; 393(10185): 2051–8.
CrossRef
Google scholar
|
[128] |
Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L, et al. Evolution of Metastases in Space and Time under Immune Selection. Cell. 2018; 175(3): 751–65.e16.
CrossRef
Google scholar
|
[129] |
Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016; 8(327): 327ra26.
CrossRef
Google scholar
|
[130] |
Van den Eynde M, Mlecnik B, Bindea G, Fredriksen T, Church SE, Lafontaine L, et al. The Link between the Multiverse of Immune Microenvironments in Metastases and the Survival of Colorectal Cancer Patients. Cancer Cell. 2018; 34(6): 1012–26.e3.
CrossRef
Google scholar
|
[131] |
Pitroda SP, Khodarev NN, Huang L, Uppal A, Wightman SC, Ganai S, et al. Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat Commun. 2018; 9(1): 1793.
CrossRef
Google scholar
|
[132] |
Pitroda SP, Chmura SJ, Weichselbaum RR. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol. 2019; 20(8): e434–e42.
CrossRef
Google scholar
|
[133] |
Luke JJ, Lemons JM, Karrison TG, Pitroda SP, Melotek JM, Zha Y, et al. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol. 2018; 36(16): 1611–8.
CrossRef
Google scholar
|
[134] |
Bauml JM, Mick R, Ciunci C, Aggarwal C, Davis C, Evans T, et al. Pembrolizumab After Completion of Locally Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer: A Phase 2 Trial. JAMA Oncol. 2019; 5(9): 1283–90.
CrossRef
Google scholar
|
[135] |
Gomez DR, Blumenschein GR, Jr., Lee JJ, Hernandez M, Ye R, Camidge DR, et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016; 17(12): 1672–82.
CrossRef
Google scholar
|
[136] |
Chicas-Sett R, Zafra J, Rodriguez-Abreu D. Castilla-Martinez J, Benitez G, Salas B, et al. Combination of SABR With Anti-PD-1 in Oligoprogressive Non-Small Cell Lung Cancer and Melanoma: Results of a Prospective Multicenter Observational Study. Int J Radiat Oncol Biol Phys. 2022; 114(4): 655–65.
CrossRef
Google scholar
|
[137] |
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33.
CrossRef
Google scholar
|
[138] |
Zhou Q, Chen M, Jiang O, Pan Y, Hu D, Lin Q, et al. Sugemalimab versus placebo after concurrent or sequential chemoradiotherapy in patients with locally advanced, unresectable, stage III non-small-cell lung cancer in China (GEMSTONE-301): interim results of a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2022; 23(2): 209–19.
CrossRef
Google scholar
|
[139] |
Garassino MC, Mazieres J, Reck M, Chouaid C, Bischoff H, Reinmuth N, et al. Durvalumab After Sequential Chemoradiotherapy in Stage III, Unresectable NSCLC: The Phase 2 PACIFIC-6 Trial. J Thorac Oncol. 2022; 17(12): 1415–27.
CrossRef
Google scholar
|
[140] |
Zhao B, Li H, Wu J, Ma W. Durvalumab After Sequential Chemoradiotherapy Is Safe for Stage III, Unresectable NSCLC: Results From Phase 2 PACIFIC-6 Trial. J Thorac Oncol. 2023; 18(1): e1–e2.
CrossRef
Google scholar
|
[141] |
Jabbour SK, Lee KH, Frost N, Breder V, Kowalski DM, Pollock T, et al. Pembrolizumab Plus Concurrent Chemoradiation Therapy in Patients With Unresectable, Locally Advanced, Stage III Non-Small Cell Lung Cancer: The Phase 2 KEYNOTE-799 Nonrandomized Trial. JAMA Oncol. 2021; 7(9): 1–9.
CrossRef
Google scholar
|
[142] |
Bradley J, Sugawara S, Lee K, Ostoros G, Demirkazik A, Zemanova M, et al. LBA1 Durvalumab in combination with chemoradiotherapy for patients with unresectable stage III NSCLC: Final results from PACIFIC-2. ESMO Open. 2024; 9: 102986.
CrossRef
Google scholar
|
[143] |
Ross HJ, Kozono DE, Urbanic JJ, Williams TM, Dufrane C, Bara I, et al. AFT-16: Phase II trial of atezolizumab before and after definitive chemoradiation (CRT) for unresectable stage III non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2020; 38(15_suppl): 9045.
CrossRef
Google scholar
|
[144] |
Ross HJ, Kozono DE, Urbanic JJ, Williams TM, DuFrane C, Bara I, et al. AFT-16: Phase II trial of neoadjuvant and adjuvant atezolizumab and chemoradiation (CRT) for stage III non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2021; 39(15_suppl): 8513.
CrossRef
Google scholar
|
[145] |
Yang Y, Wang J, Zhang T, Zhou Z, Wang Y, Jiang Y, et al. Efficacy and safety of definitive chemoradiotherapy with or without induction immune checkpoint inhibitors in patients with stage III non-small cell lung cancer. Front Immunol. 2023; 14: 1281888.
CrossRef
Google scholar
|
[146] |
Stinchcombe TE, Zhang Y, Vokes EE, Schiller JH, Bradley JD, Kelly K, et al. Pooled Analysis of Individual Patient Data on Concurrent Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer in Elderly Patients Compared With Younger Patients Who Participated in US National Cancer Institute Cooperative Group Studies. J Clin Oncol. 2017; 35(25): 2885–92.
CrossRef
Google scholar
|
[147] |
Ohri N, Jolly S, Cooper BT, Kabarriti R, Bodner WR, Klein J, et al. The Selective Personalized Radio-immunotherapy for Locally Advanced NSCLC Trial (SPRINT): Initial results. Journal of Clinical Oncology. 2022; 40(16_suppl): 8510.
CrossRef
Google scholar
|
[148] |
Tachihara M, Tsujino K, Ishihara T, Hayashi H, Sato Y, Kurata T, et al. Durvalumab Plus Concurrent Radiotherapy for Treatment of Locally Advanced Non-Small Cell Lung Cancer: The DOLPHIN Phase 2 Nonrandomized Controlled Trial. JAMA Oncol. 2023; 9(11): 1505–13.
CrossRef
Google scholar
|
[149] |
Arcidiacono F, Anselmo P, Casale M, Zannori C, Ragusa M, Mancioli F, et al. STereotactic Ablative RadioTherapy in NEWly Diagnosed and Recurrent Locally Advanced Non-Small Cell Lung Cancer Patients Unfit for ConcurrEnt RAdio-Chemotherapy: Early Analysis of the START-NEW-ERA Non-Randomised Phase II Trial. Int J Radiat Oncol Biol Phys. 2023; 115(4): 886–96.
CrossRef
Google scholar
|
[150] |
Bozorgmehr F, Juergens J, Hammer-Hellmig M. Bueschenfelde CMZ, Classen J, Alt J, et al. Thoracic radiotherapy PLUS durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy: Employing optimized (hypofractionated) radiotherapy to foster durvalumab efficacy—The TRADE-hypo trial. Journal of Clinical Oncology. 2021; 39(15_suppl):TPS8585-TPS.
CrossRef
Google scholar
|
[151] |
Theelen W, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts J, et al. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019; 5(9): 1276–82.
CrossRef
Google scholar
|
[152] |
Welsh J, Menon H, Chen D, Verma V, Tang C, Altan M, et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: a randomized phase I/II trial. J Immunother Cancer. 2020; 8(2): e001001.
CrossRef
Google scholar
|
[153] |
Theelen W, Chen D, Verma V, Hobbs BP, Peulen HMU, Aerts J, et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir Med. 2021; 9(5): 467–75.
CrossRef
Google scholar
|
[154] |
Torok JA, Salama JK. Combining immunotherapy and radiotherapy for the STAR treatment. Nat Rev Clin Oncol. 2019; 16(11): 666–7.
CrossRef
Google scholar
|
[155] |
McBride S, Sherman E, Tsai CJ, Baxi S, Aghalar J, Eng J, et al. Randomized Phase II Trial of Nivolumab With Stereotactic Body Radiotherapy Versus Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol. 2021; 39(1): 30–7.
CrossRef
Google scholar
|
[156] |
Pakkala S, Higgins K, Chen Z, Sica G, Steuer C, Zhang C, et al. Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: a randomized phase II study. J Immunother Cancer. 2020; 8(2): e001302.
CrossRef
Google scholar
|
[157] |
Hu Y, Zhou M, Tang J, Li S, Liu H, Hu J, et al. Efficacy and Safety of Stereotactic Body Radiotherapy Combined with Camrelizumab and Apatinib in Patients with Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. Clin Cancer Res. 2023; 29(20): 4088–97.
CrossRef
Google scholar
|
[158] |
Parikh AR, Szabolcs A, Allen JN, Clark JW, Wo JY, Raabe M, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Cancer. 2021; 2(11): 1124–35.
CrossRef
Google scholar
|
[159] |
Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008; 18(4): 240–3.
CrossRef
Google scholar
|
[160] |
Ochoa-de-Olza M, Bourhis J, Coukos G, Herrera FG. Low-dose irradiation for reversing immunotherapy resistance: how to translate? J Immunother Cancer. 2022; 10(7): e004939.
CrossRef
Google scholar
|
[161] |
Zhang L, Li R, Chen H, Wei J, Qian H, Su S, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine. 2017; 12: 2129–42.
CrossRef
Google scholar
|
[162] |
Arnold SM, Regine WF, Ahmed MM, Valentino J, Spring P, Kudrimoti M, et al. Low-dose fractionated radiation as a chemopotentiator of neoadjuvant paclitaxel and carboplatin for locally advanced squamous cell carcinoma of the head and neck: results of a new treatment paradigm. Int J Radiat Oncol Biol Phys. 2004; 58(5): 1411–7.
CrossRef
Google scholar
|
[163] |
Reiss KA, Herman JM, Zahurak M, Brade A, Dawson LA, Scardina A, et al. A Phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin Cancer Res. 2015; 21(1): 68–76.
CrossRef
Google scholar
|
[164] |
Wei J, Montalvo-Ortiz W. Yu L, Krasco A, Ebstein S, Cortez C, et al. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol. 2021; 6(58): eabg0117.
CrossRef
Google scholar
|
[165] |
Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012; 83(4): 1306–10.
CrossRef
Google scholar
|
[166] |
Scott JG, Berglund A, Schell MJ, Mihaylov I, Fulp WJ, Yue B, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017; 18(2): 202–11.
CrossRef
Google scholar
|
[167] |
Monjazeb AM, Giobbie-Hurder A. Lako A, Thrash EM, Brennick RC, Kao KZ, et al. A Randomized Trial of Combined PD-L1 and CTLA-4 Inhibition with Targeted Low-Dose or Hypofractionated Radiation for Patients with Metastatic Colorectal Cancer. Clin Cancer Res. 2021; 27(9): 2470–80.
CrossRef
Google scholar
|
[168] |
Schoenfeld JD, Giobbie-Hurder A. Ranasinghe S, Kao KZ, Lako A, Tsuji J, et al. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2022; 23(2): 279–91.
CrossRef
Google scholar
|
[169] |
Welsh JW, Tang C, de Groot P, Naing A, Hess KR, Heymach JV, et al. Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dos. Radiation-Related Abscopal Responses. Cancer Immunol Res. 2019; 7(12): 1903–9.
CrossRef
Google scholar
|
[170] |
Tang C, Welsh JW, de Groot P, Massarelli E, Chang JY, Hess KR, et al. Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clin Cancer Res. 2017; 23(6): 1388–96.
CrossRef
Google scholar
|
[171] |
Kroeze SGC, Pavic M, Stellamans K, Lievens Y, Becherini C, Scorsetti M, et al. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol. 2023; 24(3): e121–e32.
CrossRef
Google scholar
|
[172] |
Huang K, Prasad S, Ma SJ, Iovoli A, Farrugia M, Malik NK, et al. Long-term outcomes of single and five fraction schedules of stereotactic body radiation therapy for early-stage central or peripheral NSCLC: Neither fractionation nor location matter? Journal of Clinical Oncology. 2023; 41(16_suppl): 8538.
CrossRef
Google scholar
|
[173] |
Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and Immunotherapy for Cancer: From “Systemic” to “Multisite”. Clin Cancer Res. 2020; 26(12): 2777–82.
CrossRef
Google scholar
|
[174] |
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol. 2023; 20(8): 543–57.
CrossRef
Google scholar
|
[175] |
Koukourakis MI, Giatromanolaki A. Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer. 2022; 1877(3): 188704.
CrossRef
Google scholar
|
[176] |
Venkatesulu B, Giridhar P, Pujari L, Chou B, Lee JH, Block AM, et al. Lymphocyte sparing normal tissue effects in the clinic (LymphoTEC): A systematic review of dose constraint considerations to mitigate radiation-related lymphopenia in the era of immunotherapy. Radiother Oncol. 2022; 177: 81–94.
CrossRef
Google scholar
|
[177] |
Will immunotherapy really change radiotherapy? Lancet Oncol. 2019; 20(12): 1642–4.
CrossRef
Google scholar
|
[178] |
Gensheimer MF, Gee H, Shirato H, Taguchi H, Snyder JM, Chin AL, et al. Individualized Stereotactic Ablative Radiotherapy for Lung Tumors: The iSABR Phase 2 Nonrandomized Controlled Trial. JAMA Oncol. 2023; 9(11): 1525–34.
CrossRef
Google scholar
|
[179] |
Wang Y, Zhang T, Huang Y, Li W, Zhao J, Yang Y, et al. Real-World Safety and Efficacy of Consolidation Durvalumab After Chemoradiation Therapy for Stage III Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis. Int J Radiat Oncol Biol Phys. 2022; 112(5): 1154–64.
CrossRef
Google scholar
|
[180] |
Tian S, Switchenko JM, Buchwald ZS, Patel PR, Shelton JW, Kahn SE, et al. Lung Stereotactic Body Radiation Therapy and Concurrent Immunotherapy: A Multicenter Safety and Toxicity Analysis. Int J Radiat Oncol Biol Phys. 2020; 108(1): 304–13.
CrossRef
Google scholar
|
[181] |
Cortiula F, Reymen B, Peters S, Van Mol P, Wauters E, Vansteenkiste J, et al. Immunotherapy in unresectable stage III non-small-cell lung cancer: state of the art and novel therapeutic approaches. Ann Oncol. 2022; 33(9): 893–908.
CrossRef
Google scholar
|
[182] |
Chen JL, Pan CK, Huang YS, Tsai CY, Wang CW, Lin YL, et al. Evaluation of antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1, and anti-angiogeni. therapy in murine lung tumors. Cancer Immunol Immunother. 2021; 70(2): 391–404.
CrossRef
Google scholar
|
[183] |
Hong S, Bi M, Yu H, Yan Z, Wang H. Radiation therapy enhanced therapeutic efficacy of anti-PD1 against gastric cancer. J Radiat Res. 2020; 61(6): 851–9.
CrossRef
Google scholar
|
[184] |
Philippou Y, Sjoberg HT, Murphy E, Alyacoubi S, Jones KI, Gordon-Weeks AN. et al. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br J Cancer. 2020; 123(7): 1089–100.
CrossRef
Google scholar
|
[185] |
Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer. 2019; 7(1): 160.
CrossRef
Google scholar
|
[186] |
Oweida A, Hararah MK, Phan A, Binder D, Bhatia S, Lennon S, et al. Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin Cancer Res. 2018; 24(21): 5368–80.
CrossRef
Google scholar
|
[187] |
Rodriguez-Ruiz ME, Rodriguez I, Barbes B, Mayorga L, Sanchez-Paulete AR. Ponz-Sarvise M, et al. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy. 2017; 16(6): 1246–51.
CrossRef
Google scholar
|
[188] |
Young KH, Baird JR, Savage T, Cottam B, Friedman D, Bambina S, et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS One. 2016; 11(6): e0157164.
CrossRef
Google scholar
|
[189] |
Hao Y, Yasmin-Karim S. Moreau M, Sinha N, Sajo E, Ngwa W. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study. Phys Med Biol. 2016; 61(24): N697–N707.
CrossRef
Google scholar
|
[190] |
Habets TH, Oth T, Houben AW, Huijskens MJ, Senden-Gijsbers BL. Schnijderberg MC, et al. Fractionated Radiotherapy with 3×8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response. PLoS One. 2016; 11(7): e0159515.
CrossRef
Google scholar
|
[191] |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015; 520(7547): 373–7.
CrossRef
Google scholar
|
[192] |
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009; 15(17): 5379–88.
CrossRef
Google scholar
|
[193] |
Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005; 11(2 Pt 1): 728–34.
CrossRef
Google scholar
|
[194] |
Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004; 58(3): 862–70.
CrossRef
Google scholar
|
[195] |
Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999; 59(24): 6028–32.
|
/
〈 |
|
〉 |