
The regulatory roles and clinical significance of glycolysis in tumor
Qiqi Qiao, Shunfeng Hu, Xin Wang
Cancer Communications ›› 2024, Vol. 44 ›› Issue (07) : 761-786.
The regulatory roles and clinical significance of glycolysis in tumor
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
glycolysis / tumor development / biomarkers / targeted therapy
[1] |
Li L, Wang M, Ma Q, Ye J, Sun G. Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol. 2022; 323(2): C617-C29.
CrossRef
Google scholar
|
[2] |
Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int J Mol Sci. 2020; 21(23): 8924.
CrossRef
Google scholar
|
[3] |
Bustamante MF, Oliveira PG, Garcia-Carbonell R. Croft AP, Smith JM, Serrano RL, et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis. 2018; 77(11): 1636-43.
CrossRef
Google scholar
|
[4] |
Chang SM, Vander Heiden MG. Inhibiting GLUTtony in cancer. Cell Chem Biol. 2022; 29(3): 353-5.
CrossRef
Google scholar
|
[5] |
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008; 134(5): 703-7.
CrossRef
Google scholar
|
[6] |
Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013; 24(2): 213-28.
CrossRef
Google scholar
|
[7] |
Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1alpha axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018; 9(3): 321.
CrossRef
Google scholar
|
[8] |
Lopez-Lazaro M. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008; 8(3): 305-12.
CrossRef
Google scholar
|
[9] |
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019; 95(7): 912-9.
CrossRef
Google scholar
|
[10] |
He H, Xiao L, Wang J, Guo D, Lu Z. Aerobic glycolysis promotes tumor immune evasion and tumor cell stemness through the noncanonical function of hexokinase 2. Cancer Commun (Lond). 2023; 43(3): 387-90.
CrossRef
Google scholar
|
[11] |
Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 2003; 63(14): 3847-54.
|
[12] |
Li Y, Li Y, Luo J, Fu X, Liu P, Liu S, et al. FAM126A hainteracted with ENO1 mediates proliferation and metastasis in pancreatic cancer via PI3K/AKT signaling pathway. Cell Death Discov. 2022; 8(1): 248.
CrossRef
Google scholar
|
[13] |
Wang G, Zheng H, Xiang Y, Wang Y, Wang K, Ren X, et al. Identifying the critical oncogenic mechanism of LDHA based on a prognostic model of T-cell synthetic drivers. Int Immunopharmacol. 2024; 126: 111265.
CrossRef
Google scholar
|
[14] |
Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose Metabolism on Tumor Plasticity, Diagnosis, and Treatment. Front Oncol. 2020; 10: 317.
CrossRef
Google scholar
|
[15] |
Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015; 34(10): 1349-70.
CrossRef
Google scholar
|
[16] |
Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014; 15(6): 122.
CrossRef
Google scholar
|
[17] |
Ohba S, Tang Y, Johannessen TA, Mukherjee J. PKM2 Interacts With the Cdk1-CyclinB Complex to Facilitate Cell Cycle Progression in Gliomas. Front Oncol. 2022; 12: 844861.
CrossRef
Google scholar
|
[18] |
Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J, et al. HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma. Cell Death Dis. 2020; 11(12): 1036.
CrossRef
Google scholar
|
[19] |
Fu H, Gao H, Qi X, Zhao L, Wu D, Bai Y, et al. Aldolase A promotes proliferation and G(1)/S transition via the EGFR/MAPK pathway in non-small cell lung cancer. Cancer Commun (Lond). 2018; 38(1): 18.
CrossRef
Google scholar
|
[20] |
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 2017; 117(10): 1518-28.
CrossRef
Google scholar
|
[21] |
Afonso J, Goncalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A. et al. Glucose Metabolism Reprogramming in Bladder Cancer: Hexokinase 2 (HK2) as Prognostic Biomarker and Target for Bladder Cancer Therapy. Cancers (Basel). 2023; 15(3): 982.
CrossRef
Google scholar
|
[22] |
Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009; 284(36): 24223-32.
CrossRef
Google scholar
|
[23] |
Calvo MN, Bartrons R, Castano E, Perales JC, Navarro-Sabate A. Manzano A. PFKFB3 gene silencing decreases glycolysis, induces cell-cycl. delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett. 2006; 580(13): 3308-14.
CrossRef
Google scholar
|
[24] |
Li J, Zhang S, Liao D, Zhang Q, Chen C, Yang X, et al. Overexpression of PFKFB3 promotes cell glycolysis and proliferation in renal cell carcinoma. BMC Cancer. 2022; 22(1): 83.
CrossRef
Google scholar
|
[25] |
Matsumoto K, Noda T, Kobayashi S, Sakano Y, Yokota Y, Iwagami Y, et al. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma. Cancer Lett. 2021;500: 29-640.
CrossRef
Google scholar
|
[26] |
Mamczur P, Gamian A, Kolodziej J, Dziegiel P, Rakus D. Nuclear localization of aldolase A correlates with cell proliferation. Biochim Biophys Acta. 2013; 1833(12): 2812-22.
CrossRef
Google scholar
|
[27] |
Rose IA, O’Connell EL. Studies on the interaction of aldolase with substrate analogues. J Biol Chem. 1969; 244(1): 126-34.
CrossRef
Google scholar
|
[28] |
Zhou J, Lei N, Qin B, Chen M, Gong S, Sun H, et al. Aldolase A promotes cervical cancer cell radioresistance by regulating the glycolysis and DNA damage after irradiation. Cancer Biol Ther. 2023; 24(1): 2287128.
CrossRef
Google scholar
|
[29] |
Sundararaj KP, Wood RE, Ponnusamy S, Salas AM, Szulc Z, Bielawska A, et al. Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 2004; 279(7): 6152-62.
CrossRef
Google scholar
|
[30] |
Li T, Tan X, Yang R, Miao Y, Zhang M, Xi Y, et al. Discovery of novel glyceraldehyde-3-phosphate dehydrogenase inhibitor via docking-based virtual screening. Bioorg Chem. 2020; 96: 103620.
CrossRef
Google scholar
|
[31] |
Joseph J, Cruz-Sanchez FF. Carreras J. Enolase activity and isoenzyme distribution in human brain regions and tumors. J Neurochem. 1996; 66(6): 2484-90.
CrossRef
Google scholar
|
[32] |
Zhang J, Li H, Miao L, Ding J. Silencing of ENO1 inhibits the proliferation, migration and invasion of human breast cancer cells. J BUON. 2020; 25(2): 696-701.
|
[33] |
Liu Y, Liao L, An C, Wang X, Li Z, Xu Z, et al. alpha-Enolase Lies Downstream of mTOR/HIF1alpha and Promotes Thyroid Carcinoma Progression by Regulating CST1. Front Cell Dev Biol. 2021; 9: 670019.
CrossRef
Google scholar
|
[34] |
Qiao H, Wang Y, Zhu B, Jiang L, Yuan W, Zhou Y, et al. Enolase1 overexpression regulates the growth of gastric cancer cells and predicts poor survival. J Cell Biochem. 2019; 120(11): 18714-23.
CrossRef
Google scholar
|
[35] |
Xia Y, Wang X, Liu Y, Shapiro E, Lepor H, Tang MS, et al. PKM2 Is Essential for Bladder Cancer Growth and Maintenance. Cancer Res. 2022; 82(4): 571-85.
CrossRef
Google scholar
|
[36] |
Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013; 52(3): 340-52.
CrossRef
Google scholar
|
[37] |
Yang W, Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle. 2013; 12(19): 3154-8.
CrossRef
Google scholar
|
[38] |
Wu Z, Wu J, Zhao Q, Fu S, Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol. 2020; 22(5): 631-46.
CrossRef
Google scholar
|
[39] |
Yuan Q, Yu H, Chen J, Song X, Sun L. Knockdown of pyruvate kinase type M2 suppresses tumor survival and invasion in osteosarcoma cells both in vitro and in vivo. Exp Cell Res. 2018; 362(1): 209-16.
CrossRef
Google scholar
|
[40] |
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011; 480(7375): 118-22.
CrossRef
Google scholar
|
[41] |
Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol. 2022; 13: 1038421.
CrossRef
Google scholar
|
[42] |
Serganova I, Cohen IJ, Vemuri K, Shindo M, Maeda M, Mane M, et al. LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response. PLoS One. 2018; 13(9): e0203965.
CrossRef
Google scholar
|
[43] |
Muramatsu H, Sumitomo M, Morinaga S, Kajikawa K, Kobayashi I, Nishikawa G, et al. Targeting lactate dehydrogenase A promotes docetaxel induced cytotoxicity predominantly in castration resistant prostate cancer cells. Oncol Rep. 2019; 42(1): 224-30.
|
[44] |
Harada K, Oita E, Chiba K. Metaphase I arrest of starfish oocytes induced via the MAP kinase pathway is released by an increase of intracellular pH. Development. 2003; 130(19): 4581-6.
CrossRef
Google scholar
|
[45] |
Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014; 2: 7.
CrossRef
Google scholar
|
[46] |
Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta. 2014; 1846(2): 285-96.
CrossRef
Google scholar
|
[47] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-74.
CrossRef
Google scholar
|
[48] |
Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014; 2: 19.
CrossRef
Google scholar
|
[49] |
Yang J, Ren B, Yang G, Wang H, Chen G, You L, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. 2020; 77(2): 305-21.
CrossRef
Google scholar
|
[50] |
Wang G, Su H, Guo Z, Li H, Jiang Z, Cao Y, et al. Rubus Occidentalis and its bioactive compounds against cancer: From molecular mechanisms to translational advances. Phytomedicine. 2024; 126: 155029.
CrossRef
Google scholar
|
[51] |
Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011; 71(7): 2550-60.
CrossRef
Google scholar
|
[52] |
Li L, Zhang Y, Qiao J, Yang JJ, Liu ZR. Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis. J Biol Chem. 2014; 289(37): 25812-21.
CrossRef
Google scholar
|
[53] |
Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol Cancer. 2016; 15: 3.
CrossRef
Google scholar
|
[54] |
Peng F, Li Q, Sun JY, Luo Y, Chen M, Bao Y. PFKFB3 is involved in breast cancer proliferation, migration, invasion and angiogenesis. Int J Oncol. 2018; 52(3): 945-54.
|
[55] |
Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, et al. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene. 2001; 20(28): 3751-6.
CrossRef
Google scholar
|
[56] |
Jung SY, Song HS, Park SY, Chung SH, Kim YJ. Pyruvate promotes tumor angiogenesis through HIF-1-dependent PAI-1 expression. Int J Oncol. 2011; 38(2): 571-6.
CrossRef
Google scholar
|
[57] |
Yang P, Li Z, Wang Y, Zhang L, Wu H, Li Z. Secreted pyruvate kinase M2 facilitates cell migration via PI3K/Akt and Wnt/beta-catenin pathway in colon cancer cells. Biochem Biophys Res Commun. 2015; 459(2): 327-32.
CrossRef
Google scholar
|
[58] |
Yang X, Li W, Han X, Wang J, Dai J, Ye X, et al. Apatinib weakens proliferation, migration, invasion, and angiogenesis of thyroid cancer cells through downregulating pyruvate kinase M2. Sci Rep. 2024; 14(1): 879.
CrossRef
Google scholar
|
[59] |
Gao J, Zhao R, Xue Y, Niu Z, Cui K, Yu F, et al. Role of enolase-1 in response to hypoxia in breast cancer: exploring the mechanisms of action. Oncol Rep. 2013; 29(4): 1322-32.
CrossRef
Google scholar
|
[60] |
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, et al. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol. 2022; 13: 828875.
CrossRef
Google scholar
|
[61] |
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007; 109(9): 3812-9.
CrossRef
Google scholar
|
[62] |
Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer. 2012; 131(3): 633-40.
CrossRef
Google scholar
|
[63] |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014; 513(7519): 559-63.
CrossRef
Google scholar
|
[64] |
Urata K, Kajihara I, Miyauchi H, Mijiddorj T, Otsuka-Maeda S. Sakamoto R, et al. The Warburg effect and tumour immune microenvironment in extramammary Paget’s disease: overexpression of lactate dehydrogenase A correlates with immune resistance. J Eur Acad Dermatol Venereol. 2020; 34(8): 1715-21.
CrossRef
Google scholar
|
[65] |
Ohashi T, Aoki M, Tomita H, Akazawa T, Sato K, Kuze B, et al. M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 2017; 108(6): 1128-34.
CrossRef
Google scholar
|
[66] |
Gottfried E, Kunz-Schughart LA. Ebner S, Mueller-Klieser W. Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006; 107(5): 2013-21.
CrossRef
Google scholar
|
[67] |
Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab. 2016; 24(5): 657-71.
CrossRef
Google scholar
|
[68] |
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 2010; 184(3): 1200-9.
CrossRef
Google scholar
|
[69] |
De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol. 2015; 16(11): 1174-84.
CrossRef
Google scholar
|
[70] |
Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al. CTLA-4 blockade drives loss of T(reg) stability in glycolysis-low tumours. Nature. 2021; 591(7851): 652-8.
CrossRef
Google scholar
|
[71] |
Curi R, Levada-Pires AC. Silva EBD, Poma SO, Zambonatto RF, Domenech P, et al. The Critical Role of Cell Metabolism for Essential Neutrophil Functions. Cell Physiol Biochem. 2020; 54(4): 629-47.
CrossRef
Google scholar
|
[72] |
Leifler KS, Svensson S, Abrahamsson A, Bendrik C, Robertson J, Gauldie J, et al. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol. 2013; 190(8): 4420-30.
CrossRef
Google scholar
|
[73] |
Wang J, Wang X, Guo Y, Ye L, Li D, Hu A, et al. Therapeutic targeting of SPIB/SPI1-facilitated interplay of cancer cells and neutrophils inhibits aerobic glycolysis and cancer progression. Clin Transl Med. 2021; 11(11): e588.
CrossRef
Google scholar
|
[74] |
Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 2023; 72(5): 958-71.
CrossRef
Google scholar
|
[75] |
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 2021; 9(6): e002305.
CrossRef
Google scholar
|
[76] |
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE. Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021; 591(7851): 645-51.
CrossRef
Google scholar
|
[77] |
Principe M, Borgoni S, Cascione M, Chattaragada MS, Ferri-Borgogno S. Capello M, et al. Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis. J Hematol Oncol. 2017; 10(1): 16.
CrossRef
Google scholar
|
[78] |
Li J, Wang F, Gao H, Huang S, Cai F, Sun J. ALDOLASE A regulates invasion of bladder cancer cells via E-cadherin-EGFR signaling. J Cell Biochem. 2019; 120(8): 13694-705.
CrossRef
Google scholar
|
[79] |
Nikoobakht M, Shamshiripour P, Azimi Nekoo Z, Fallah Haghmohammadi S. Elevated Lactate and Total Protein Levels in Stereotactic Brain Biopsy Specimen; Potential Biomarkers of Malignancy and Poor Prognosis. Arch Iran Med. 2019; 22(3): 125-31.
|
[80] |
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001; 51(2): 349-53.
CrossRef
Google scholar
|
[81] |
Zhan P, Zhao S, Yan H, Yin C, Xiao Y, Wang Y, et al. alpha-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol Carcinog. 2017; 56(5): 1427-37.
CrossRef
Google scholar
|
[82] |
Hsiao KC, Shih NY, Fang HL, Huang TS, Kuo CC, Chu PY, et al. Surface alpha-enolase promotes extracellular matrix degradation and tumor metastasis and represents a new therapeutic target. PLoS One. 2013; 8(7): e69354.
CrossRef
Google scholar
|
[83] |
Kumari S, Malla R. New Insight on the Role of Plasminogen Receptor in Cancer Progression. Cancer Growth Metastasis. 2015; 8: 35-42.
CrossRef
Google scholar
|
[84] |
Trojanowicz B, Winkler A, Hammje K, Chen Z, Sekulla C, Glanz D, et al. Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol. 2009; 42(3): 249-60.
CrossRef
Google scholar
|
[85] |
Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S, et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res. 2014; 20(10): 2595-606.
CrossRef
Google scholar
|
[86] |
Hua S, Lei L, Deng L, Weng X, Liu C, Qi X, et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene. 2018; 37(12): 1624-36.
CrossRef
Google scholar
|
[87] |
Yang K, Zhong Z, Zou J, Liao JY, Chen S, Zhou S, et al. Glycolysis and tumor progression promoted by the m(6)A writer VIRMA via m(6)A-dependent upregulation of STRA6 in pancreatic ductal adenocarcinoma. Cancer Lett. 2024; 590: 216840.
CrossRef
Google scholar
|
[88] |
Li S, Dai W, Mo W, Li J, Feng J, Wu L, et al. By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma. Int J Cancer. 2017; 141(12): 2571-84.
CrossRef
Google scholar
|
[89] |
Li Y, Lu Z, Liang Z, Ji D, Zhang P, Liu Q, et al. Metastasis-associated in colon cancer-1 is associated with poor prognosis in hepatocellular carcinoma, partly by promoting proliferation through enhanced glucose metabolism. Mol Med Rep. 2015; 12(1): 426-34.
CrossRef
Google scholar
|
[90] |
Saito Y, Takasawa A, Takasawa K, Aoyama T, Akimoto T, Ota M, et al. Aldolase A promotes epithelial-mesenchymal transition to increase malignant potentials of cervical adenocarcinoma. Cancer Sci. 2020; 111(8): 3071-81.
CrossRef
Google scholar
|
[91] |
Zhang Y, Cai H, Liao Y, Zhu Y, Wang F, Hou J. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell like properties and the epithelial mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway. Int J Oncol. 2020; 57(3): 743-55.
CrossRef
Google scholar
|
[92] |
Sun L, Lu T, Tian K, Zhou D, Yuan J, Wang X, et al. Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. Eur J Pharmacol. 2019; 845: 8-15.
CrossRef
Google scholar
|
[93] |
Lu J, Kornmann M, Traub B. Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. Int J Mol Sci. 2023; 24(19): 14815.
CrossRef
Google scholar
|
[94] |
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2): 69-84.
CrossRef
Google scholar
|
[95] |
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov. 2016; 15(5): 311-25.
CrossRef
Google scholar
|
[96] |
Ji S, Zhang B, Liu J, Qin Y, Liang C, Shi S, et al. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Lett. 2016; 374(1): 127-35.
CrossRef
Google scholar
|
[97] |
Lin Y, Zhang W, Liu L, Li W, Li Y, Li B. ENO1 Promotes OSCC Migration and Invasion by Orchestrating IL-6 Secretion from Macrophages via a Positive Feedback Loop. Int J Mol Sci. 2023; 24(1): 737.
CrossRef
Google scholar
|
[98] |
Li HJ, Ke FY, Lin CC, Lu MY, Kuo YH, Wang YP, et al. ENO1 Promotes Lung Cancer Metastasis via HGFR and WNT Signaling-Driven Epithelial-to-Mesenchymal Transition. Cancer Res. 2021; 81(15): 4094-109.
CrossRef
Google scholar
|
[99] |
Yang P, Li Z, Fu R, Wu H, Li Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal. 2014; 26(9): 1853-62.
CrossRef
Google scholar
|
[100] |
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34(2-3): 121-38.
CrossRef
Google scholar
|
[101] |
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev. 2015; 73(3): 140-54.
CrossRef
Google scholar
|
[102] |
Bao YY, Zhong JT, Shen LF, Dai LB, Zhou SH, Fan J, et al. Effect of Glut-1 and HIF-1alpha double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J Cell Mol Med. 2022; 26(10): 2881-94.
CrossRef
Google scholar
|
[103] |
Sharma V, Singh TG, Mannan A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem Res. 2022; 47(8): 2173-86.
CrossRef
Google scholar
|
[104] |
Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism. 2016; 65(2): 124-39.
CrossRef
Google scholar
|
[105] |
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer. 2018; 142(12): 2414-24.
CrossRef
Google scholar
|
[106] |
Shen N, Wang Y, Sun X, Bai X, He J, Cui Q, et al. Expression of hypoxia-inducible factor 1alpha, glucose transporter 1, and hexokinase 2 in primary central nervous system lymphoma and the correlation with the biological behaviors. Brain Behav. 2020; 10(8): e01718.
|
[107] |
Song MY, Lee DY, Yun SM, Kim EH. GLUT3 Promotes Epithelial-Mesenchymal Transition via TGF-beta/JNK/ATF2 Signaling Pathway in Colorectal Cancer Cells. Biomedicines. 2022; 10(8): 1837.
CrossRef
Google scholar
|
[108] |
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013; 14(12): 759-74.
CrossRef
Google scholar
|
[109] |
Yim WW, Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020; 6: 6.
CrossRef
Google scholar
|
[110] |
Cheong H. Integrating autophagy and metabolism in cancer. Arch Pharm Res. 2015; 38(3): 358-71.
CrossRef
Google scholar
|
[111] |
Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011; 10(9): 1533-41.
CrossRef
Google scholar
|
[112] |
Guo JY, Teng X, Laddha SV, Ma S, Van Nostrand SC, Yang Y, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 2016; 30(15): 1704-17.
CrossRef
Google scholar
|
[113] |
Marcucci F, Rumio C. Tumor Cell Glycolysis-At the Crossroad of Epithelial-Mesenchymal Transition and Autophagy. Cells. 2022; 11(6): 1041.
CrossRef
Google scholar
|
[114] |
Qian X, Li X, Lu Z. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis. Autophagy. 2017; 13(7): 1246-7.
CrossRef
Google scholar
|
[115] |
Soltany-Rezaee-Rad M, Mottaghi-Dastjerdi N. Setayesh N, Roshandel G, Ebrahimifard F, Sepehrizadeh Z. Overexpression of FOXO3, MYD88, and GAPDH Identified by Suppression Subtractive Hybridization in Esophageal Cancer Is Associated with Autophagy. Gastroenterol Res Pract. 2014; 2014: 185035.
CrossRef
Google scholar
|
[116] |
Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY, et al. Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol. 2018; 95: 9-16.
CrossRef
Google scholar
|
[117] |
Ikeda S, Abe F, Matsuda Y, Kitadate A, Takahashi N, Tagawa H. Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma. Cancer Sci. 2020; 111(11): 4088-101.
CrossRef
Google scholar
|
[118] |
Bertin S, Samson M, Pons C, Guigonis JM, Gavelli A, Baque P, et al. Comparative proteomics study reveals that bacterial CpG motifs induce tumor cell autophagy in vitro and in vivo. Mol Cell Proteomics. 2008; 7(12): 2311-22.
CrossRef
Google scholar
|
[119] |
Wang L, Yang L, Yang Z, Tang Y, Tao Y, Zhan Q, et al. Glycolytic Enzyme PKM2 Mediates Autophagic Activation to Promote Cell Survival in NPM1-Mutated Leukemia. Int J Biol Sci. 2019; 15(4): 882-94.
CrossRef
Google scholar
|
[120] |
Yan S, Zhou N, Zhang D, Zhang K, Zheng W, Bao Y, et al. PFKFB3 Inhibition Attenuates Oxaliplatin-Induced Autophagy and Enhances Its Cytotoxicity in Colon Cancer Cells. Int J Mol Sci. 2019; 20(21): 5415.
CrossRef
Google scholar
|
[121] |
Das CK, Parekh A, Parida PK, Bhutia SK, Mandal M. Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta Mol Cell Res. 2019; 1866(6): 1004-18.
CrossRef
Google scholar
|
[122] |
Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer. 2017; 17(10): 577-93.
CrossRef
Google scholar
|
[123] |
Li C, Wang S, Li C, Yin Y, Feng F, Fu H, et al. Improved risk stratification by PET-based intratumor heterogeneity in children with high-risk neuroblastoma. Front Oncol. 2022; 12: 896593.
CrossRef
Google scholar
|
[124] |
Gill R, Abdah-Bortnyak R. Amit A, Bar-Peled U. Keidar Z. [F18]FDG PET/CT-Derived Metabolic and Volumetric Biomarkers Can Predict Response to Treatment in Locally Advanced Cervical Cancer Patients. Cancers (Basel). 2022; 14(18): 4382.
CrossRef
Google scholar
|
[125] |
Jin P, Bai M, Liu J, Yu J, Meng X. Tumor metabolic and secondary lymphoid organ metabolic markers on 18F-fludeoxyglucose positron emission tomography predict prognosis of immune checkpoint inhibitors in advanced lung cancer. Front Immunol. 2022; 13: 1004351.
CrossRef
Google scholar
|
[126] |
Schmidt KC, Lucignani G, Sokoloff L. Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilization: a re-examination. J Nucl Med. 1996; 37(2): 394-9.
|
[127] |
Zhou H, Luby-Phelps K. Mickey BE, Habib AA, Mason RP, Zhao D. Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. PLoS One. 2009; 4(11): e8051.
CrossRef
Google scholar
|
[128] |
Truszkiewicz A, Bartusik-Aebisher D. Zalejska-Fiolka J, Kawczyk-Krupka A. Aebisher D. Cellular Lactate Spectroscopy Using 1.5 Tesla Clinical Apparatus. Int J Mol Sci. 2022; 23(19): 11355.
CrossRef
Google scholar
|
[129] |
Serrao EM, Kettunen MI, Rodrigues TB, Dzien P, Wright AJ, Gopinathan A, et al. MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut. 2016; 65(3): 465-75.
CrossRef
Google scholar
|
[130] |
Papanagiotou P, Backens M, Grunwald IQ, Farmakis G, Politi M, Roth C, et al. [MR spectroscopy in brain tumors]. Radiologe. 2007; 47(6): 520-9.
CrossRef
Google scholar
|
[131] |
Ross B, Helsper JT, Cox IJ, Young IR, Kempf R, Makepeace A, et al. Osteosarcoma and other neoplasms of bone. Magnetic resonance spectroscopy to monitor therapy. Arch Surg. 1987; 122(12): 1464-9.
CrossRef
Google scholar
|
[132] |
Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013; 5(198): 198ra08.
|
[133] |
Bharti SK, Shannon BA, Sharma RK, Levin AS, Morris CD, Bhujwalla ZM, et al. Characterization of lipomatous tumors with high-resolution (1)H MRS at 17.6T: Do benign lipomas, atypical lipomatous tumors and liposarcomas have a distinct metabolic signature? Front Oncol. 2022; 12: 920560.
CrossRef
Google scholar
|
[134] |
Tien RD, Lai PH, Smith JS, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR Am J Roentgenol. 1996; 167(1): 201-9.
CrossRef
Google scholar
|
[135] |
Zakian KL, Shukla-Dave A. Meyers P, Gorlick R, Healey J, Thaler HT, et al. Identification of prognostic markers in bone sarcomas using proton-decoupled phosphorus magnetic resonance spectroscopy. Cancer Res. 2003; 63(24): 9042-7.
|
[136] |
Chung-Faye G, Hayee B, Maestranzi S, Donaldson N, Forgacs I, Sherwood R. Fecal M2-pyruvate kinase (M2-PK): a novel marker of intestinal inflammation. Inflamm Bowel Dis. 2007; 13(11): 1374-8.
CrossRef
Google scholar
|
[137] |
Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther. 2018; 11: 2075-82.
CrossRef
Google scholar
|
[138] |
Liu W, Woolbright BL, Pirani K, Didde R, Abbott E, Kaushik G, et al. Tumor M2-PK: A novel urine marker of bladder cancer. PLoS One. 2019; 14(6): e0218737.
CrossRef
Google scholar
|
[139] |
Papadaki C, Sfakianaki M, Lagoudaki E, Giagkas G, Ioannidis G, Trypaki M, et al. PKM2 as a biomarker for chemosensitivity to front-line platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer. Br J Cancer. 2014; 111(9): 1757-64.
CrossRef
Google scholar
|
[140] |
Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, et al. The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget. 2017; 8(26): 43356-67.
CrossRef
Google scholar
|
[141] |
Kim TH, Kwak Y, Song C, Lee HS, Kim DW, Oh HK, et al. GLUT-1 may predict metastases and death in patients with locally advanced rectal cancer. Front Oncol. 2023; 13: 1094480.
CrossRef
Google scholar
|
[142] |
Ma Y, Hu M, Zhou L, Ling S, Li Y, Kong B, et al. Long non-coding RNA HOTAIR promotes cancer cell energy metabolism in pancreatic adenocarcinoma by upregulating hexokinase-2. Oncol Lett. 2019; 18(3): 2212-9.
|
[143] |
Wu J, Hu L, Wu F, Zou L, He T. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget. 2017; 8(19): 32332-44.
CrossRef
Google scholar
|
[144] |
Liu D, Wang D, Wu C, Zhang L, Mei Q, Hu G, et al. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis. Cancer Manag Res. 2019; 11: 3611-9.
CrossRef
Google scholar
|
[145] |
Ulas A, Turkoz FP, Silay K, Tokluoglu S, Avci N, Oksuzoglu B, et al. A laboratory prognostic index model for patients with advanced non-small cell lung cancer. PLoS One. 2014; 9(12): e114471.
CrossRef
Google scholar
|
[146] |
Li X, Liu J, Qian L, Ke H, Yao C, Tian W, et al. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy. Mol Cell Biochem. 2018; 445(1-2): 123-34.
CrossRef
Google scholar
|
[147] |
Zhang L, Wang H, Dong X. Diagnostic value of alpha-enolase expression and serum alpha-enolase autoantibody levels in lung cancer. J Bras Pneumol. 2018; 44(1): 18-23.
CrossRef
Google scholar
|
[148] |
Lu W, Gao J, Yang J, Cao Y, Jiang L, Li M, et al. Down-Regulated Phosphoglycerate Kinase 1 Expression Is Associated With Poor Prognosis in Patients With Gallbladder Cancer. Medicine (Baltimore). 2015; 94(49): e2244.
CrossRef
Google scholar
|
[149] |
Vlachostergios PJ, Oikonomou KG, Gibilaro E, Apergis G. Elevated lactic acid is a negative prognostic factor in metastatic lung cancer. Cancer Biomark. 2015; 15(6): 725-34.
CrossRef
Google scholar
|
[150] |
Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA. Mueller-Klieser W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol. 2011; 39(2): 453-63.
|
[151] |
Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel). 2021; 13(16): 4184.
CrossRef
Google scholar
|
[152] |
Yang J, Virostko J, Liu J, Jarrett AM, Hormuth DA, 2nd, Yankeelov TE. Comparing mechanism-based and machine learning models for predicting the effects of glucose accessibility on tumor cell proliferation. Sci Rep. 2023; 13(1): 10387.
CrossRef
Google scholar
|
[153] |
Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med. 2011; 3(94): 94ra70.
CrossRef
Google scholar
|
[154] |
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycl. arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012; 11(8): 1672-82.
CrossRef
Google scholar
|
[155] |
Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site. J Biol Chem. 2016; 291(52): 26762-72.
CrossRef
Google scholar
|
[156] |
Yakisich JS, Azad N, Kaushik V, Iyer AKV. The Biguanides Metformin and Buformin in Combination with 2-Deoxy-glucose or WZB-117 Inhibit the Viability of Highly Resistant Human Lung Cancer Cells. Stem Cells Int. 2019; 2019: 6254269.
CrossRef
Google scholar
|
[157] |
Wu Q, Ba-Alawi W. Deblois G, Cruickshank J, Duan S, Lima-Fernandes E. et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun. 2020; 11(1): 4205.
CrossRef
Google scholar
|
[158] |
Ma Y, Wang W, Idowu MO, Oh U, Wang XY, Temkin SM, et al. Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876. Cancers (Basel). 2018; 11(1): 33.
CrossRef
Google scholar
|
[159] |
Guo Z, Cheng Z, Wang J, Liu W, Peng H, Wang Y, et al. Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angew Chem Int Ed Engl. 2019; 58(48): 17158-62.
CrossRef
Google scholar
|
[160] |
Casiraghi A, Bensimon A, Superti-Furga G. Recent developments in ligands and chemical probes targeting solute carrier transporters. Curr Opin Chem Biol. 2021; 62: 53-63.
CrossRef
Google scholar
|
[161] |
Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, et al. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci. 2013; 104(12): 1690-6.
CrossRef
Google scholar
|
[162] |
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer. 2020; 1874(2): 188457.
CrossRef
Google scholar
|
[163] |
Kapoor K, Finer-Moore JS. Pedersen BP, Caboni L, Waight A, Hillig RC, et al. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci U S A. 2016; 113(17): 4711-6.
CrossRef
Google scholar
|
[164] |
Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, et al. Trehalose inhibits cell proliferation and amplifies long-term temozolomide-and radiation-induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. J Cell Physiol. 2019; 234(7): 11708-21.
CrossRef
Google scholar
|
[165] |
Hevia D, Gonzalez-Menendez P. Quiros-Gonzalez I, Miar A, Rodriguez-Garcia A. Tan DX, et al. Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J Pineal Res. 2015; 58(2): 234-50.
CrossRef
Google scholar
|
[166] |
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel). 2020; 12(7): 1822.
CrossRef
Google scholar
|
[167] |
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci. 2019; 20(13): 3374.
CrossRef
Google scholar
|
[168] |
Sage JM, Cura AJ, Lloyd KP, Carruthers A. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Am J Physiol Cell Physiol. 2015; 308(10): C827-34.
CrossRef
Google scholar
|
[169] |
Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S. The Cytotoxic Properties of Baeckea frutescens Branches Extracts in Eliminating Breast Cancer Cells. Evid Based Complement Alternat Med. 2019; 2019: 9607590.
CrossRef
Google scholar
|
[170] |
Ma X, Chen J, Huang B, Fu S, Qu S, Yu R, et al. ErbB2-upregulated HK1 and HK2 promote breast cancer cell proliferation, migration and invasion. Med Oncol. 2023; 40(5): 154.
CrossRef
Google scholar
|
[171] |
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011; 208(2): 313-26.
CrossRef
Google scholar
|
[172] |
Wang L, Yang Q, Peng S, Liu X. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. Onco Targets Ther. 2019; 12: 5359-73.
CrossRef
Google scholar
|
[173] |
Wang Z, Kang F, Gao Y, Liu Y, Xu X, Ma X, et al. Metformin Promotes 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Hepatocellular Carcinoma Cells Through FoxO1-Mediated Downregulation of Glucose-6-Phosphatase. Mol Imaging Biol. 2018; 20(3): 388-97.
CrossRef
Google scholar
|
[174] |
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett. 2017; 13(2): 800-4.
CrossRef
Google scholar
|
[175] |
Takemura A, Che XF, Tabuchi T, Moriya S, Miyazawa K, Tomoda A. Enhancement of cytotoxic and pro-apoptotic effects of 2-aminophenoxazine-3-one on the rat hepatocellular carcinoma cell line dRLh-84, the human hepatocellular carcinoma cell line HepG2, and the rat normal hepatocellular cell line RLN-10 in combination with 2-deoxy-D-glucose. Oncol Rep. 2012; 27(2): 347-55.
|
[176] |
Geschwind JF, Georgiades CS, Ko YH, Pedersen PL. Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2004; 4(3): 449-57.
CrossRef
Google scholar
|
[177] |
Rai Y, Yadav P, Kumari N, Kalra N, Bhatt AN. Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemic cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep. 2019; 39(9): BSR20190880.
CrossRef
Google scholar
|
[178] |
Berruti A, Bitossi R, Gorzegno G, Bottini A, Alquati P, De Matteis A, et al. Time to progression in metastatic breast cancer patients treated with epirubicin is not improved by the addition of either cisplatin or lonidamine: final results of a phase III study with a factorial design. J Clin Oncol. 2002; 20(20): 4150-9.
CrossRef
Google scholar
|
[179] |
De Lena M, Lorusso V, Bottalico C, Brandi M, De Mitrio A, Catino A, et al. Revertant and potentiating activity of lonidamine in patients with ovarian cancer previously treated with platinum. J Clin Oncol. 1997; 15(10): 3208-13.
CrossRef
Google scholar
|
[180] |
Nath K, Nelson DS, Heitjan DF, Leeper DB, Zhou R, Glickson JD. Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. NMR Biomed. 2015; 28(3): 281-90.
CrossRef
Google scholar
|
[181] |
Dogliotti L, Berruti A, Buniva T, Zola P, Bau MG, Farris A, et al. Lonidamine significantly increases the activity of epirubicin in patients with advanced breast cancer: results from a multicenter prospective randomized trial. J Clin Oncol. 1996; 14(4): 1165-72.
CrossRef
Google scholar
|
[182] |
Salani B, Marini C, Rio AD, Ravera S, Massollo M, Orengo AM, et al. Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci Rep. 2013; 3: 2070.
CrossRef
Google scholar
|
[183] |
Guo Y, Wei L, Zhou Y, Lu N, Tang X, Li Z, et al. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3beta-modulated mitochondrial binding of HKII. Free Radic Biol Med. 2020; 146: 119-29.
CrossRef
Google scholar
|
[184] |
Zhang Q, Liu Q, Zheng S, Liu T, Yang L, Han X, et al. Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation. J Cancer. 2021; 12(16): 4830-40.
CrossRef
Google scholar
|
[185] |
Li W, Hao J, Zhang L, Cheng Z, Deng X, Shu G. Astragalin Reduces Hexokinase 2 through Increasing miR-125b to Inhibit the Proliferation of Hepatocellular Carcinoma Cells in Vitro and in Vivo. J Agric Food Chem. 2017; 65(29): 5961-72.
CrossRef
Google scholar
|
[186] |
Zhang HN, Yang L, Ling JY, Czajkowsky DM, Wang JF, Zhang XW, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc Natl Acad Sci U S A. 2015; 112(49): 15084-9.
CrossRef
Google scholar
|
[187] |
Liu Y, Yue J, Ren Z, He M, Wang A, Xie J, et al. Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis. Toxicol Appl Pharmacol. 2024; 482: 116798.
CrossRef
Google scholar
|
[188] |
Ling S, Shan Q, Liu P, Feng T, Zhang X, Xiang P, et al. Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis. 2017; 8(11): e3159.
CrossRef
Google scholar
|
[189] |
Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015; 6(15): 13703-17.
CrossRef
Google scholar
|
[190] |
Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011; 30(42): 4297-306.
CrossRef
Google scholar
|
[191] |
Tao T, Su Q, Xu S, Deng J, Zhou S, Zhuang Y, et al. Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol. 2019; 234(3): 3088-104.
CrossRef
Google scholar
|
[192] |
Shang D, Wu J, Guo L, Xu Y, Liu L, Lu J. Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 2017; 50(5): 1848-56.
CrossRef
Google scholar
|
[193] |
Liu M, Zhang Z, Wang H, Chen X, Jin C. Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2. Int J Biol Sci. 2019; 15(3): 617-27.
CrossRef
Google scholar
|
[194] |
Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T, et al. Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol. 2018; 16: 352-8.
CrossRef
Google scholar
|
[195] |
Chen J, Jiang Z, Wang B, Wang Y, Hu X. Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett. 2012; 316(2): 204-10.
CrossRef
Google scholar
|
[196] |
Ning X, Qi H, Li R, Li Y, Jin Y, McNutt MA, et al. Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase. Eur J Med Chem. 2017; 138: 343-52.
CrossRef
Google scholar
|
[197] |
Yang P, Ding GB, Liu W, Fu R, Sajid A, Li Z. Tannic acid directly targets pyruvate kinase isoenzyme M2 to attenuate colon cancer cell proliferation. Food Funct. 2018; 9(11): 5547-59.
CrossRef
Google scholar
|
[198] |
Son JY, Yoon S, Tae IH, Park YJ, De U, Jeon Y, et al. Novel therapeutic roles of MC-4 in combination with everolimus against advanced renal cell carcinoma by dual targeting of Akt/pyruvate kinase muscle isozyme M2 and mechanistic target of rapamycin complex 1 pathways. Cancer Med. 2018; 7(10): 5083-95.
CrossRef
Google scholar
|
[199] |
Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, et al. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res. 2019; 38(1): 204.
CrossRef
Google scholar
|
[200] |
Jin X, Min Q, Wang D, Wang Y, Li G, Wang Z, et al. FV-429 induces apoptosis by regulating nuclear translocation of PKM2 in pancreatic cancer cells. Heliyon. 2024; 10(8): e29515.
CrossRef
Google scholar
|
[201] |
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, et al. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (Lond). 2020; 40(10): 501-17.
CrossRef
Google scholar
|
[202] |
Koukourakis M, Tsolou A, Pouliliou S, Lamprou I, Papadopoulou M, Ilemosoglou M, et al. Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide. Biochem Biophys Res Commun. 2017; 491(4): 932-8.
CrossRef
Google scholar
|
[203] |
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010; 107(5): 2037-42.
CrossRef
Google scholar
|
[204] |
Farabegoli F, Vettraino M, Manerba M, Fiume L, Roberti M, Di Stefano G. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci. 2012; 47(4): 729-38.
CrossRef
Google scholar
|
[205] |
Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K, et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat. 2001; 66(3): 239-48.
CrossRef
Google scholar
|
[206] |
Flack MR, Pyle RG, Mullen NM, Lorenzo B, Wu YW, Knazek RA, et al. Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab. 1993; 76(4): 1019-24.
CrossRef
Google scholar
|
[207] |
Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018; 7(12): 6124-36.
CrossRef
Google scholar
|
[208] |
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008; 7(1): 110-20.
CrossRef
Google scholar
|
[209] |
Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y. Kerr DA, 2nd, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013; 12(8): 1461-70.
CrossRef
Google scholar
|
[210] |
Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, et al. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer. 2019; 144(1): 178-89.
CrossRef
Google scholar
|
[211] |
Zhu Y, Lu L, Qiao C, Shan Y, Li H, Qian S, et al. Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor. Oncogene. 2018; 37(21): 2837-49.
CrossRef
Google scholar
|
[212] |
Wang Y, Qu C, Liu T, Wang C. PFKFB3 inhibitors as potential anticancer agents: Mechanisms of action, current developments, and structure-activit. relationships. Eur J Med Chem. 2020; 203: 112612.
CrossRef
Google scholar
|
[213] |
Bartrons R, Rodriguez-Garcia A. Simon-Molas H, Castano E, Manzano A, Navarro-Sabate A. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets. 2018; 22(8): 659-74.
CrossRef
Google scholar
|
[214] |
Grandjean G, de Jong PR, James B, Koh MY, Lemos R, Kingston J, et al. Definition of a Novel Feed-Forward Mechanism for Glycolysis-HIF1alpha Signaling in Hypoxic Tumors Highlights Aldolase A as a Therapeutic Target. Cancer Res. 2016; 76(14): 4259-69.
CrossRef
Google scholar
|
[215] |
Chang YC, Chiou J, Yang YF, Su CY, Lin YF, Yang CN, et al. Therapeutic Targeting of Aldolase A Interactions Inhibits Lung Cancer Metastasis and Prolongs Survival. Cancer Res. 2019; 79(18): 4754-66.
CrossRef
Google scholar
|
[216] |
Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 2017; 65(2): 515-28.
CrossRef
Google scholar
|
[217] |
He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, et al. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 2019; 9(11): 2280-302.
|
[218] |
Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol. 2005; 23(10): 1303-7.
CrossRef
Google scholar
|
[219] |
Capello M, Ferri-Borgogno S. Riganti C, Chattaragada MS, Principe M, Roux C, et al. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget. 2016; 7(5): 5598-612.
CrossRef
Google scholar
|
[220] |
Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature. 2012; 488(7411): 337-42.
CrossRef
Google scholar
|
[221] |
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, et al. The roles of glucose metabolic reprogramming in chemo-and radio-resistance. J Exp Clin Cancer Res. 2019; 38(1): 218.
CrossRef
Google scholar
|
[222] |
Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, et al. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene. 2018; 37(45): 5997-6009.
CrossRef
Google scholar
|
[223] |
Liu X, Miao W, Huang M, Li L, Dai X, Wang Y. Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells. Mol Cell Proteomics. 2019; 18(11): 2273-84.
CrossRef
Google scholar
|
[224] |
Sun ML, Wang GJ, Li J, Cui JW, Zhang AL, Wang ZN, et al. [Construction of shRNA eukaryotic expression vectors of pkm2 gene and their effect on drug resistant cell line of acute promyelocytic leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010; 18(1): 85-9.
|
[225] |
Nawaz MH, Ferreira JC, Nedyalkova L, Zhu H, Carrasco-Lopez C. Kirmizialtin S, et al. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci Rep. 2018; 38(1): BSR20171666.
CrossRef
Google scholar
|
[226] |
Shan W, Zhou Y, Tam KY. The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov Today. 2022; 27(9): 2574-85.
CrossRef
Google scholar
|
[227] |
Xu S, Herschman HR. A Tumor Agnostic Therapeutic Strategy for Hexokinase 1-Null/Hexokinase 2-Positive Cancers. Cancer Res. 2019; 79(23): 5907-14.
CrossRef
Google scholar
|
[228] |
Huang Y, Ouyang F, Yang F, Zhang N, Zhao W, Xu H, et al. The expression of Hexokinase 2 and its hub genes are correlated with the prognosis in glioma. BMC Cancer. 2022; 22(1): 900.
CrossRef
Google scholar
|
[229] |
Yang H, Hou H, Zhao H, Yu T, Hu Y, Hu Y, et al. HK2 Is a Crucial Downstream Regulator of miR-148a for the Maintenance of Sphere-Forming Property and Cisplatin Resistance in Cervical Cancer Cells. Front Oncol. 2021; 11: 794015.
CrossRef
Google scholar
|
[230] |
Wang J, Shao F, Yang Y, Wang W, Yang X, Li R, et al. A non-metabolic function of hexokinase 2 in small cell lung cancer: promotes cancer cell stemness by increasing USP11-mediated CD133 stability. Cancer Commun (Lond). 2022; 42(10): 1008-27.
CrossRef
Google scholar
|
[231] |
Hamabe A, Yamamoto H, Konno M, Uemura M, Nishimura J, Hata T, et al. Combined evaluation of hexokinase 2 and phosphorylated pyruvate dehydrogenase-E1alpha in invasive front lesions of colorectal tumors predicts cancer metabolism and patient prognosis. Cancer Sci. 2014; 105(9): 1100-8.
CrossRef
Google scholar
|
[232] |
Han J, Meng Q, Xi Q, Wang H, Wu G. PFKFB3 was overexpressed in gastric cancer patients and promoted the proliferation and migration of gastric cancer cells. Cancer Biomark. 2017; 18(3): 249-56.
CrossRef
Google scholar
|
[233] |
Chen L, Wu Z, Guo J, Wang X, Zhao Z, Liang H, et al. Initial clinical and experimental analyses of ALDOA in gastric cancer, as a novel prognostic biomarker and potential therapeutic target. Clin Exp Med. 2023; 23(6): 2443-56.
CrossRef
Google scholar
|
[234] |
Lu G, Shi W, Zhang Y. Prognostic Implications and Immune Infiltration Analysis of ALDOA in Lung Adenocarcinoma. Front Genet. 2021; 12: 721021.
CrossRef
Google scholar
|
[235] |
Jiang Z, Wang X, Li J, Yang H, Lin X. Aldolase A as a prognostic factor and mediator of progression via inducing epithelial-mesenchymal transition in gastric cancer. J Cell Mol Med. 2018; 22(9): 4377-86.
CrossRef
Google scholar
|
[236] |
Yang Y, Cui H, Li D, Gao Y, Chen L, Zhou C, et al. Prognosis and Immunological Characteristics of PGK1 in Lung Adenocarcinoma: A Systematic Analysis. Cancers (Basel). 2022; 14(21): 5228.
CrossRef
Google scholar
|
[237] |
Townsend MH, Ence ZE, Felsted AM, Parker AC, Piccolo SR, Robison RA, et al. Potential new biomarkers for endometrial cancer. Cancer Cell Int. 2019; 19: 19.
CrossRef
Google scholar
|
[238] |
Zieker D, Konigsrainer I, Tritschler I, Loffler M, Beckert S, Traub F, et al. Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer. Int J Cancer. 2010; 126(6): 1513-20.
CrossRef
Google scholar
|
[239] |
Sun Q, Li S, Wang Y, Peng H, Zhang X, Zheng Y, et al. Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis. Cell Death Differ. 2018; 25(6): 1160-73.
CrossRef
Google scholar
|
[240] |
Zhang D, Wu H, Zhang X, Ding X, Huang M, Geng M, et al. Phosphoglycerate Mutase 1 Predicts the Poor Prognosis of Oral Squamous Cell Carcinoma and is Associated with Cell Migration. J Cancer. 2017; 8(11): 1943-51.
CrossRef
Google scholar
|
[241] |
Huang Z, Yan Y, Wang T, Wang Z, Cai J, Cao X, et al. Identification of ENO1 as a prognostic biomarker and molecular target among ENOs in bladder cancer. J Transl Med. 2022; 20(1): 315.
CrossRef
Google scholar
|
[242] |
Hippner M, Majkowski M, Biecek P, Szkudlarek T, Simiczyjew A, Pieniazek M, et al. Alpha-Enolase (ENO1) Correlates with Invasiveness of Cutaneous Melanoma-An In Vitro and a Clinical Study. Diagnostics (Basel). 2022; 12(2): 254.
CrossRef
Google scholar
|
[243] |
Cancemi P, Buttacavoli M, Roz E, Feo S. Expression of Alpha-Enolase (ENO1), Myc Promoter-Bindin. Protein-1 (MBP-1) and Matrix Metalloproteinases (MMP-2 and MMP-9) Reflect the Nature and Aggressiveness of Breast Tumors. Int J Mol Sci. 2019; 20(16): 3952.
CrossRef
Google scholar
|
[244] |
White-Al Habeeb NM, Di Meo A, Scorilas A, Rotondo F, Masui O, Seivwright A, et al. Alpha-enolase is a potential prognostic marker in clear cell renal cell carcinoma. Clin Exp Metastasis. 2015; 32(6): 531-41.
CrossRef
Google scholar
|
[245] |
Chang H, Xu Q, Li J, Li M, Zhang Z, Ma H, et al. Lactate secreted by PKM2 upregulation promotes Galectin-9-mediated immunosuppression via inhibiting NF-kappaB pathway in HNSCC. Cell Death Dis. 2021; 12(8): 725.
CrossRef
Google scholar
|
[246] |
Mohammad GH, Olde Damink SW, Malago M, Dhar DK, Pereira SP. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One. 2016; 11(3): e0151635.
CrossRef
Google scholar
|
[247] |
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, et al. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 2014; 13: 101.
CrossRef
Google scholar
|
[248] |
Huang X, Li X, Xie X, Ye F, Chen B, Song C, et al. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast. 2016; 30: 39-46.
CrossRef
Google scholar
|
[249] |
Li L, Fath MA, Scarbrough PM, Watson WH, Spitz DR. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer. Redox Biol. 2015; 4: 127-35.
CrossRef
Google scholar
|
[250] |
Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 2007; 67(7): 3364-70.
CrossRef
Google scholar
|
[251] |
Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 2004; 64(1): 31-4.
CrossRef
Google scholar
|
[252] |
Zhang B, Chan SH, Liu XQ, Shi YY, Dong ZX, Shao XR, et al. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J Cell Mol Med. 2021; 25(18): 8836-49.
CrossRef
Google scholar
|
[253] |
Gadducci A, Brunetti I, Muttini MP, Fanucchi A, Dargenio F, Giannessi PG, et al. Epidoxorubicin and lonidamine in refractory or recurrent epithelial ovarian cancer. Eur J Cancer. 1994;30A(10): 1432-5.
CrossRef
Google scholar
|
/
〈 |
|
〉 |