Nanofiber-Based Superskin for Augmented Tactility

Mengjia Zhu , Shuo Li , Peng Bi , Huarun Liang , Xun-En Wu , Chi Zhang , Xian Song , Aifang Yu , Jingtao Xu , Haojie Lu , Haomin Wang , Junyi Zhai , Yi Li , Zijian Zheng , Yingying Zhang

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (4) : 1208 -1219.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (4) : 1208 -1219. DOI: 10.1007/s42765-025-00550-9
Research Article
research-article

Nanofiber-Based Superskin for Augmented Tactility

Author information +
History +
PDF

Abstract

Augmented-tactility wearable devices have attracted significant attention for their potential to expand the boundaries of human tactile capabilities and their broad applications in medical rehabilitation. Nonetheless, these devices face challenges in practical applications, including high susceptibility to the operating environments, such as variations in pressure, humidity, and touch speed, as well as concerns regarding wearability and comfort. In this work, we developed an augmented-tactility superskin, termed AtSkin, which integrates a skin-compatible nanofiber sensor array and deep learning algorithms to enhance material recognition regardless of the ambient environment. We fabricated a lightweight and breathable triboelectric sensor array with multilayer nanofiber architectures through electrospinning and hot pressing. The carefully selected combination of sensing layers can capture the electrical characteristics of different materials, thus enabling their distinction. Combined with deep learning algorithms, AtSkin achieved an accuracy of 97.9% in distinguishing visually similar resin and fabric materials, even under varying environmental pressures and humidities. As a proof of concept, we constructed an intelligent augmented-tactility system capable of identifying fabrics with similar textures and hand feel, demonstrating the potential of the superskin to expand human tactile capabilities, enhance augmented reality experiences, and revolutionize intelligent healthcare solutions.

Keywords

Augmented-tactility / Electronic skin / Textile electronics / Electrospun nanofibers / Smart wearables

Cite this article

Download citation ▾
Mengjia Zhu, Shuo Li, Peng Bi, Huarun Liang, Xun-En Wu, Chi Zhang, Xian Song, Aifang Yu, Jingtao Xu, Haojie Lu, Haomin Wang, Junyi Zhai, Yi Li, Zijian Zheng, Yingying Zhang. Nanofiber-Based Superskin for Augmented Tactility. Advanced Fiber Materials, 2025, 7(4): 1208-1219 DOI:10.1007/s42765-025-00550-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HandlerA, GintyDD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci, 2021, 22521

[2]

GouldJ. Superpowered skin. Nature, 2018, 56384

[3]

James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019:18: 56.

[4]

LehmannHC, WunderlichG, FinkGR, SommerC. Diagnosis of peripheral neuropathy. Neurol Res Pract, 2020, 220

[5]

ThomasCK, WestlingG. Tactile unit properties after human cervical spinal cord injury. Brain, 1995, 1181547

[6]

Estes LT, Backus D, Starner T (2015) A wearable vibration glove for improving hand sensation in persons with Spinal Cord Injury using Passive Haptic Rehabilitation. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). https://doi.org/10.4108/icst.pervasivehealth.2015.259137.

[7]

KennedyWR, SelimMM, BrinkTS, HodgesJS, Wendelschafer-CrabbG, FosterSXY-L, NolanoM, ProviteraV, SimoneDA. A new device to quantify tactile sensation in neuropathy. Neurology., 2011, 761642

[8]

ShlomyI, DivaldS, TadmorK, Leichtmann-BardoogoY, AramiA, MaozBM. Restoring tactile sensation using a triboelectric nanogenerator. ACS Nano, 2021, 1511087

[9]

World Health Organization (2019) World report on vision. https://www.who.int/publications/i/item/world-report-on-vision. Accessed 8 Oct 2019.

[10]

SteinmetzJD, BourneRRA, BriantPS, FlaxmanSR, TaylorHRB, JonasJB, AbdoliAA, AbrhaWA, AbualhasanA, Abu-GharbiehEG, AdalTG, AfshinA, AhmadiehH, AlemayehuW, AlemzadehSAS, AlfaarAS, AlipourV, AndroudiS, ArablooJ, ArditiAB, AregawiBB, ArrigoA, AshbaughC, AshrafiED, AtnafuDD, BagliEA, BaigAAW, BärnighausenTW, Battaglia ParodiM, BeheshtiMS, BhagavathulaAS, BhardwajN, BhardwajP, BhattacharyyaK, BijaniA, BikbovM, BottoneM, BraithwaiteTM, BronAM, Burugina NagarajaSA, ButtZA, Caetano dos SantosFLL, CarneiroVLJ, CassonRJ, ChengC-YJ, ChoiJ-YJ, ChuD-T, CicinelliMVM, CoelhoJMG, CongdonNGA, CoutoRAA, CromwellEAM, DahlawiSM, DaiX, DanaR, DandonaL, DandonaRA, Del MonteMA, Derbew MollaM, DervenisNA, DestaAAP, DevaJP, DiazD, DjalaliniaSE, EhrlichJR, ElayedathRR, ElhabashyHRB, EllweinLB, EmamianMH, EskandariehS, FarzadfarFG, FernandesAG, FischerFS, FriedmanDSM, FurtadoJM, GaidhaneS, GazzardG, GebremichaelB, GeorgeR, GhashghaeeA, GilaniSA, GolechhaM, HamidiSR, HammondBRR, HartnettMERK, HartonoRK, HashiAI, HaySI, HayatK, HeidariG, HoHC, HollaR, HousehMJ, HuangJJE, IbitoyeSEM, IlicIMD, IlicMDD, IngramADN, IrvaniSSN, IslamSMS, ItumallaR, JayaramSP, JhaRP, KahlounR, KalhorR, KandelH, KasaAS, KavetskyyTA, KayodeGAH, KempenJH, KhairallahM, KhalilovRA, KhanEAC, KhannaRC, KhatibMNA, KhojaTAE, KimJE, KimYJ, KimGR, KisaS, KisaA, KosenS, KoyanagiA, Kucuk BicerB, KulkarniVP, KurmiOP, LandiresIC, LansinghVCL, LeasherJLE, LeGrandKE, LevezielN, LimburgH, LiuX, Madhava KunjathurS, MalekiS, ManafiN, MansouriK, McAlindenCG, MelesGGM, MershaAM, MichalekIMR, MillerTR, MisraS, MohammadY, MohammadiSFA, MohammedJAH, MokdadAH, MoniMAA, MontasirAAR, MorseARF, MulawGFC, NaderiM, NaderifarHS, NaidooKS, NaimzadaMD, NangiaV, Narasimha SwamySM, NaveedDM, NegashHL, NguyenHL, Nunez-SamudioVA, OgboFA, OgundimuKT, OlagunjuATE, OnwujekweOE, OtstavnovNO, OwolabiMO, PakshirK, Panda-JonasS, ParekhU, ParkE-C, PasovicM, PawarS, PesudovsK, PetoTQ, PhamHQ, PinheiroM, PodderV, Rahimi-MovagharV, RahmanMHUY, RamuluPY, RathiP, RawafSL, RawafDL, RawalL, ReinigNM, RenzahoAM, RezapourAL, RobinAL, RossettiL, SabourS, SafiS, SahebkarA, SahraianMAM, SamyAM, SathianB, SayaGK, SaylanMA, ShaheenAAA, ShaikhMAT, ShenTT, ShibuyaKS, ShiferawWS, ShigematsuM, ShinJI, SilvaJC, SilvesterAA, SinghJA, SinghalDS, SitorusRS, SkiadaresiEY, SkryabinVYA, SkryabinaAA, SoheiliAB, SorrieMBARC, SousaRARCT, SreeramareddyCT, StambolianDG, TadesseEG, TahhanNI, TarequeMI, TopouzisFX, TranBX, TsegayeGK, TsilimbarisMK, VarmaR, VirgiliG, VongpradithAT, VuGT, WangYX, WangNH, WeldemariamAHK, WestSKG, WondmenehTGY, WongTY, YaseriM, YonemotoN, YuCS, ZastrozhinMS, ZhangZ-JR, ZimsenSR, ResnikoffS, VosT. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study. Lancet Global Health, 2021, 9e144

[11]

FlavinMT, HaK-H, GuoZ, LiS, KimJ-T, SaxenaT, SimatosD, Al-NajjarF, MaoY, BandapalliS, FanC, BaiD, ZhangZ, ZhangY, FlavinE, MadsenKE, HuangY, EmuL, ZhaoJ, YooJ-Y, ParkM, ShinJ, HuangAG, ShinH-S, ColgateJE, HuangY, XieZ, JiangH, RogersJA. Bioelastic state recovery for haptic sensory substitution. Nature, 2024, 635345

[12]

SundaramS, KellnhoferP, LiY, ZhuJ-Y, TorralbaA, MatusikW. Learning the signatures of the human grasp using a scalable tactile glove. Nature, 2019, 569698

[13]

LeeS, FranklinS, HassaniFA, YokotaT, NayeemMOG, WangY, LeibR, ChengG, FranklinDW, SomeyaT. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370966

[14]

LiuZ, HuX, BoR, YangY, ChengX, PangW, LiuQ, WangY, WangS, XuS, ShenZ, ZhangY. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science, 2024, 384987

[15]

ChenL, KarilanovaS, ChakiS, WenC, WangL, WinbladB, ZhangS-L, ÖzçelikkaleA, ZhangZ-B. Spike timing–based coding in neuromimetic tactile system enables dynamic object classification. Science, 2024, 384660

[16]

ChunS, KimJ-S, YooY, ChoiY, JungSJ, JangD, LeeG, SongK-I, NamKS, YounI, SonD, PangC, JeongY, JungH, KimY-J, ChoiB-D, KimJ, KimS-P, ParkW, ParkS. An artificial neural tactile sensing system. Nat Electron, 2021, 4429

[17]

ParkJ, KimM, LeeY, LeeHS, KoH. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv, 2015, 1e1500661

[18]

BoutryCM, NegreM, JordaM, VardoulisO, ChortosA, KhatibO, BaoZ. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot, 2018, 3eaau6914

[19]

MassariL, FransveaG, D’AbbraccioJ, FilosaM, TerrusoG, AlipertaA, D’AlesioG, ZaltieriM, SchenaE, PalermoE, SinibaldiE, OddoCM. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat Mach Intell, 2022, 4425

[20]

LiuM, ZhangY, WangJ, QinN, YangH, SunK, HaoJ, ShuL, LiuJ, ChenQ, ZhangP, TaoTH. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat Commun, 2022, 1379

[21]

JiJ, ZhaoW, WangY, LiQ, WangG. Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS Nano, 2023, 1720153

[22]

HuangY, ZhouJ, KeP, GuoX, YiuCK, YaoK, CaiS, LiD, ZhouY, LiJ, WongTH, LiuY, LiL, GaoY, HuangX, LiH, LiJ, ZhangB, ChenZ, ZhengH, YangX, GaoH, ZhaoZ, GuoX, SongE, WuH, WangZ, XieZ, ZhuK, YuX. A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat Electron, 2023, 61020

[23]

OhS, SongT-E, MahatoM, KimJ-S, YooH, LeeM-J, KhanM, YeoW-H, OhI-K. Easy-to-wear auxetic SMA Knot-architecture for spatiotemporal and multimodal haptic feedbacks. Adv Mater, 2023, 352304442

[24]

HeS, DaiJ, WanD, SunS, YangX, XiaX, ZiY. Biomimetic bimodal haptic perception using triboelectric effect. Sci Adv., 2024, 10eq936793

[25]

GuoY, LuoY, PlamthottamR, PeiS, WeiC, HanZ, FanJ, PossingerM, LiuK, ZhuY, FeiZ, WinardiI, HongH, ZhangY, JinL, PeiQ. Haptic artificial muscle skin for extended reality. Sci Adv., 2024, 10eadr1765

[26]

QuX, LiuZ, TanP, WangC, LiuY, FengH, LuoD, LiZ, WangZL. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv., 2022, 8eqbq2521

[27]

ShuS, WangZ, ChenP, ZhongJ, TangW, WangZL. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv Mater, 2023, 352211385

[28]

WeiX, LiH, YueW, GaoS, ChenZ, LiY, ShenG. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, 2022, 51481

[29]

SongZ, YinJ, WangZ, LuC, YangZ, ZhaoZ, LinZ, WangJ, WuC, ChengJ, DaiY, ZiY, HuangS-L, ChenX, SongJ, LiG, DingW. A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy, 2022, 93106798

[30]

XuC, WangAC, ZouH, ZhangB, ZhangC, ZiY, PanL, WangP, FengP, LinZ, WangZL. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv Mater, 2018, 301803968

[31]

ZouH, ZhangY, GuoL, WangP, HeX, DaiG, ZhengH, ChenC, WangAC, XuC, WangZL. Quantifying the triboelectric series. Nat Commun, 2019, 101427

[32]

LiL, WangX, ZhuP, LiH, WangF, WuJ. The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator. Nano Energy, 2020, 70104476

[33]

DingY, JiangJ, WuY, ZhangY, ZhouJ, ZhangY, HuangQ, ZhengZ. Porous conductive textiles for wearable electronics. Chem Rev., 2024, 1241535

[34]

ZhangJ-H, LiZ, XuJ, LiJ, YanK, ChengW, XinM, ZhuT, DuJ, ChenS, AnX, ZhouZ, ChengL, YingS, ZhangJ, GaoX, ZhangQ, JiaX, ShiY, PanL. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat Commun, 2022, 135839

[35]

HuangQ, ZhengZ. Pathway to developing permeable electronics. ACS Nano, 2022, 1615537

[36]

YeC, YangS, RenJ, DongS, CaoL, PeiY, LingS. Electroassisted Core-Spun triboelectric nanogenerator fabrics for intelliSense and artificial intelligence perception. ACS Nano, 2022, 164415

Funding

Beijing Municipal Science and Technology(Z221100002722015)

National Natural Science Foundation of China(52125201)

RGC Senior Research Fellowship Scheme(SRFS2122-5S04)

PolyU RI-IWEAR(1-CD44)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/