One-Step Manufacture and Crosslinking of Gelatin/Polygonum sibiricum Polysaccharide Bioactive Nanofibrous Sponges for Rapid Hemostasis and Infected Wound Healing
Jing Wang , Ziyi Zhou , Xiaopei Zhang , Manfei Fu , Kuanjun Fang , Yuanfei Wang , Tong Wu
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (4) : 1148 -1164.
One-Step Manufacture and Crosslinking of Gelatin/Polygonum sibiricum Polysaccharide Bioactive Nanofibrous Sponges for Rapid Hemostasis and Infected Wound Healing
The occurrence of uncontrolled hemorrhage and wound infection represents a significant cause of mortality in military and clinical settings, particularly in instances of traumatic injury. In this regard, developing an effective method to facilitate rapid hemostasis and treat infected wounds is of significant importance and value. In this study, we developed a novel strategy for the one-step manufacturing and crosslinking of gelatin (Gel)/Polygonum sibiricum polysaccharide (PSP) bioactive nanofibrous sponge through electrospinning with a homemade liquid vortex collector. Attributed to the addition of a specific ratio of tannic acid (TA) in the electrospinning solution, the resulting gelatin-tannic acid-Polygonum sibiricum polysaccharide (GelTa-PSP) nanofibrous sponges can be in-situ crosslinked during the electrospinning process and easily collected in the expected shape and size, without the need for any toxic crosslinking agent for post-treatment. We demonstrate that GelTa-PSP nanofibrous sponges possess excellent water absorption and hemostatic properties, adequate antimicrobial activity, and favorable biocompatibility. Specifically, the GelTa-PSP nanofibrous sponges encourage blood cell adhesion and exhibit strong hemostatic capabilities. In comparison to medical gauze, the GelTa-PSP nanofibrous sponges provide effective procoagulant function and hemostatic impact in rat tail-breaking and liver injury models. Moreover, due to the bioactivity of Chinese herbal medicine flavonoid polysaccharides, the GelTa-PSP nanofibrous sponges demonstrated enhanced performance in wound healing of infected rats. These findings suggest that GelTa-PSP nanofibrous sponges hold significant potential as a biomaterial for clinical applications in hemostasis and wound healing.
Schematic illustration showing the preparation of GelTa-PSP nanofibrous sponges and its application for rapid hemostasis and infected wound healing
Polygonum sibiricum polysaccharide / Nanofibrous sponge / Hemostasis / Antibacterial / Infected wound healing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
Donghua University, Shanghai, China
/
| 〈 |
|
〉 |