Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data

Rongbin Zheng, Xin Dong, Changxin Wan, Xiaoying Shi, Xiaoyan Zhang, Clifford A. Meyer

PDF(1487 KB)
PDF(1487 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 267-276. DOI: 10.1007/s40484-020-0204-7
PROTOCOL AND TUTORIAL
PROTOCOL AND TUTORIAL

Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data

Author information +
History +

Abstract

The Cistrome Data Browser (DB) at the website (cistrome.org/db) provides about 56,000 published human and mouse ChIP-seq, DNase-seq, and ATAC-seq chromatin profiles, which we have processed using uniform analysis and quality control pipelines. The Cistrome DB Toolkit at the website (dbtoolkit.cistrome.org) was developed to allow users to investigate fundamental questions using this data collection. In this tutorial, we describe how to use the Cistrome DB to search for publicly available chromatin profiles, to assess sample quality, to access peak results, to visualize signal intensities, to explore DNA sequence motifs, and to identify putative target genes. We also describe the use of the Toolkit module to seek the factors most likely to regulate a gene of interest, the factors that bind to a given genomic interval (enhancer, SNP, etc.), and samples that have significant peak overlaps with user-defined peak sets. This tutorial guides biomedical researchers in the use of Cistrome DB resources to rapidly obtain valuable insights into gene regulatory questions

Keywords

ChIP-seq / chromatin accessibility / gene regulatory analysis / transcription factor

Cite this article

Download citation ▾
Rongbin Zheng, Xin Dong, Changxin Wan, Xiaoying Shi, Xiaoyan Zhang, Clifford A. Meyer. Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data. Quant. Biol., 2020, 8(3): 267‒276 https://doi.org/10.1007/s40484-020-0204-7

References

[1]
Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502
CrossRef Google scholar
[2]
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef Google scholar
[3]
Furey, T. S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet., 13, 840–852
CrossRef Google scholar
[4]
Song, L. and Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc., 2010, pdb.prot5384
CrossRef Google scholar
[5]
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218
CrossRef Google scholar
[6]
Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R. and Weirauch, M. T. (2018) The Human Transcription Factors. Cell, 172, 650–665
CrossRef Google scholar
[7]
The ENCODE Project Consortium (2013) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Google scholar
[8]
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330
CrossRef Google scholar
[9]
Barrett, T., Wilhite, S. E.,Ledoux, P., Evangelista, C., Kim, I.T., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M. (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res., 41, D991–D995
[10]
Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., Chen, C. H., Brown, M., Zhang, X., Meyer, C. A., (2019) Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res., 47, D729–D735
CrossRef Google scholar
[11]
Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y., (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet., 50, 238–249
CrossRef Google scholar
[12]
Ballaré, C., Castellano, G., Gaveglia, L., Althammer, S., González-Vallinas, J., Eyras, E., Le Dily, F., Zaurin, R., Soronellas, D., Vicent, G. P., (2013) Nucleosome-driven transcription factor binding and gene regulation. Mol. Cell, 49, 67–79
CrossRef Google scholar
[13]
Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526
CrossRef Google scholar
[14]
Jiang, S. and Mortazavi, A. (2018) Integrating ChIP-seq with other functional genomics data. Brief. Funct. Genomics, 17, 104–115
CrossRef Google scholar
[15]
Guan, D., Shao, J., Deng, Y., Wang, P., Zhao, Z., Liang, Y., Wang, J. and Yan, B. (2014) CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data. Bioinformatics, 30, 1190–1192
CrossRef Google scholar
[16]
Wasserman, W. W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet., 5, 276–287
CrossRef Google scholar
[17]
Qin, Q., Mei, S., Wu, Q., Sun, H., Li, L., Taing, L., Chen, S., Li, F., Liu, T., Zang, C., (2016) ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics, 17, 404
CrossRef Google scholar
[18]
Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A., Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515
CrossRef Google scholar
[19]
Li, S., Wan, C., Zheng, R., Fan, J., Dong, X., Meyer, C. A. and Liu, X. S. (2019) Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks. Nucleic Acids Res., 47, W206–W211
CrossRef Google scholar
[20]
Layer, R. M., Pedersen, B. S., Disera, T., Marth, G. T., Gertz, J. and Quinlan, A. R. (2018) GIGGLE: a search engine for large-scale integrated genome analysis. Nat. Methods, 15, 123–126
CrossRef Google scholar
[21]
Karolchik, D. and Kent, W. J. (2003) The UCSC Genome Browser. Curr. Protoc. in Bioinforma., 00, 1.4.1–1.4.23
[22]
Li, D., Hsu, S., Purushotham, D., Sears, R. L. and Wang, T. (2019) WashU Epigenome Browser update 2019. Nucleic Acids Res., 47, W158–W165
CrossRef Google scholar
[23]
Corces, M. R., Granja, J. M., Shams, S., Louie, B. H., Seoane, J. A., Zhou, W., Silva, T. C., Groeneveld, C., Wong, C. K., Cho, S. W., (2018) The chromatin accessibility landscape of primary human cancers. Science, 362, eaav1898
CrossRef Google scholar
[24]
Bell, O., Tiwari, V. K., Thomä, N. H. and Schübeler, D. (2011) Determinants and dynamics of genome accessibility. Nat. Rev. Genet., 12, 554–564
CrossRef Google scholar
[25]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef Google scholar
[26]
Marinov, G. K., Kundaje, A., Park, P. J. and Wold, B. J. (2014) Large-scale quality analysis of published ChIP-seq data. G3: Genes, Genomes. Genetics, 4, 209–223
[27]
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers, R. M., Brown, M., Li, W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137
[28]
Siepel, A. and Haussler, D. (2005) Phylogenetic Hidden Markov Models. In: Statistical Methods in Molecular Evolution. Statistics for Biology and Health. New York: Springer
[29]
Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. D. W., Richards, S., (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 15, 1034–1050
CrossRef Google scholar
[30]
Meyer, C. A., He, H. H., Brown, M. and Liu, X. S. (2011) BINOCh: Binding inference from nucleosome occupancy changes. Bioinformatics, 27, 1867–1868
CrossRef Google scholar
[31]
Jiang, P. and Singh, M. (2014) CCAT: Combinatorial Code Analysis Tool for transcriptional regulation. Nucleic Acids Res., 42, 2833–2847
CrossRef Google scholar
[32]
Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y. and Greenleaf, W. J. (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523, 486–490
CrossRef Google scholar
[33]
Jia, G., Preussner, J., Chen, X., Guenther, S., Yuan, X., Yekelchyk, M., Kuenne, C., Looso, M., Zhou, Y., Teichmann, S., (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun., 9, 4877
CrossRef Google scholar
[34]
Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L. and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959
CrossRef Google scholar
[35]
Demichelis, F., Setlur, S. R., Banerjee, S., Chakravarty, D., Chen, J. Y. H., Chen, C. X., Huang, J., Beltran, H., Oldridge, D. A., Kitabayashi, N., (2012) Identification of functionally active, low frequency copy number variants at 15q21.3 and 12q21.31 associated with prostate cancer risk. Proc. Natl. Acad. Sci. USA, 109, 6686–6691
CrossRef Google scholar

ACKNOWLEDGEMENTS

The authors would like to acknowledge Dr. Zhiping Weng for providing the backup of the Cistrome DB and Dr. Ting Wang for the Wash U Epigenome Gateway Browser. This work is supported by National Institutes of Health of US (U24 CA237617).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Rongbin Zheng, Xin Dong, Changxin Wan, Xiaoying Shi, Xiaoyan Zhang and Clifford A. Meyer declare that they have no conflict of interests.ƒThe article does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1487 KB)

Accesses

Citations

Detail

Sections
Recommended

/