Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data
Rongbin Zheng, Xin Dong, Changxin Wan, Xiaoying Shi, Xiaoyan Zhang, Clifford A. Meyer
Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data
The Cistrome Data Browser (DB) at the website (cistrome.org/db) provides about 56,000 published human and mouse ChIP-seq, DNase-seq, and ATAC-seq chromatin profiles, which we have processed using uniform analysis and quality control pipelines. The Cistrome DB Toolkit at the website (dbtoolkit.cistrome.org) was developed to allow users to investigate fundamental questions using this data collection. In this tutorial, we describe how to use the Cistrome DB to search for publicly available chromatin profiles, to assess sample quality, to access peak results, to visualize signal intensities, to explore DNA sequence motifs, and to identify putative target genes. We also describe the use of the Toolkit module to seek the factors most likely to regulate a gene of interest, the factors that bind to a given genomic interval (enhancer, SNP, etc.), and samples that have significant peak overlaps with user-defined peak sets. This tutorial guides biomedical researchers in the use of Cistrome DB resources to rapidly obtain valuable insights into gene regulatory questions
ChIP-seq / chromatin accessibility / gene regulatory analysis / transcription factor
[1] |
Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497–1502
CrossRef
Google scholar
|
[2] |
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef
Google scholar
|
[3] |
Furey, T. S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet., 13, 840–852
CrossRef
Google scholar
|
[4] |
Song, L. and Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc., 2010, pdb.prot5384
CrossRef
Google scholar
|
[5] |
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218
CrossRef
Google scholar
|
[6] |
Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R. and Weirauch, M. T. (2018) The Human Transcription Factors. Cell, 172, 650–665
CrossRef
Google scholar
|
[7] |
The ENCODE Project Consortium (2013) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef
Google scholar
|
[8] |
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J.,
CrossRef
Google scholar
|
[9] |
Barrett, T., Wilhite, S. E.,Ledoux, P., Evangelista, C., Kim, I.T., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M.
|
[10] |
Zheng, R., Wan, C., Mei, S., Qin, Q., Wu, Q., Sun, H., Chen, C. H., Brown, M., Zhang, X., Meyer, C. A.,
CrossRef
Google scholar
|
[11] |
Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y.,
CrossRef
Google scholar
|
[12] |
Ballaré, C., Castellano, G., Gaveglia, L., Althammer, S., González-Vallinas, J., Eyras, E., Le Dily, F., Zaurin, R., Soronellas, D., Vicent, G. P.,
CrossRef
Google scholar
|
[13] |
Ouyang, Z., Zhou, Q. and Wong, W. H. (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA, 106, 21521–21526
CrossRef
Google scholar
|
[14] |
Jiang, S. and Mortazavi, A. (2018) Integrating ChIP-seq with other functional genomics data. Brief. Funct. Genomics, 17, 104–115
CrossRef
Google scholar
|
[15] |
Guan, D., Shao, J., Deng, Y., Wang, P., Zhao, Z., Liang, Y., Wang, J. and Yan, B. (2014) CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data. Bioinformatics, 30, 1190–1192
CrossRef
Google scholar
|
[16] |
Wasserman, W. W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet., 5, 276–287
CrossRef
Google scholar
|
[17] |
Qin, Q., Mei, S., Wu, Q., Sun, H., Li, L., Taing, L., Chen, S., Li, F., Liu, T., Zang, C.,
CrossRef
Google scholar
|
[18] |
Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A., Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515
CrossRef
Google scholar
|
[19] |
Li, S., Wan, C., Zheng, R., Fan, J., Dong, X., Meyer, C. A. and Liu, X. S. (2019) Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks. Nucleic Acids Res., 47, W206–W211
CrossRef
Google scholar
|
[20] |
Layer, R. M., Pedersen, B. S., Disera, T., Marth, G. T., Gertz, J. and Quinlan, A. R. (2018) GIGGLE: a search engine for large-scale integrated genome analysis. Nat. Methods, 15, 123–126
CrossRef
Google scholar
|
[21] |
Karolchik, D. and Kent, W. J. (2003) The UCSC Genome Browser. Curr. Protoc. in Bioinforma., 00, 1.4.1–1.4.23
|
[22] |
Li, D., Hsu, S., Purushotham, D., Sears, R. L. and Wang, T. (2019) WashU Epigenome Browser update 2019. Nucleic Acids Res., 47, W158–W165
CrossRef
Google scholar
|
[23] |
Corces, M. R., Granja, J. M., Shams, S., Louie, B. H., Seoane, J. A., Zhou, W., Silva, T. C., Groeneveld, C., Wong, C. K., Cho, S. W.,
CrossRef
Google scholar
|
[24] |
Bell, O., Tiwari, V. K., Thomä, N. H. and Schübeler, D. (2011) Determinants and dynamics of genome accessibility. Nat. Rev. Genet., 12, 554–564
CrossRef
Google scholar
|
[25] |
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef
Google scholar
|
[26] |
Marinov, G. K., Kundaje, A., Park, P. J. and Wold, B. J. (2014) Large-scale quality analysis of published ChIP-seq data. G3: Genes, Genomes. Genetics, 4, 209–223
|
[27] |
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers, R. M., Brown, M., Li, W.,
|
[28] |
Siepel, A. and Haussler, D. (2005) Phylogenetic Hidden Markov Models. In: Statistical Methods in Molecular Evolution. Statistics for Biology and Health. New York: Springer
|
[29] |
Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. D. W., Richards, S.,
CrossRef
Google scholar
|
[30] |
Meyer, C. A., He, H. H., Brown, M. and Liu, X. S. (2011) BINOCh: Binding inference from nucleosome occupancy changes. Bioinformatics, 27, 1867–1868
CrossRef
Google scholar
|
[31] |
Jiang, P. and Singh, M. (2014) CCAT: Combinatorial Code Analysis Tool for transcriptional regulation. Nucleic Acids Res., 42, 2833–2847
CrossRef
Google scholar
|
[32] |
Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y. and Greenleaf, W. J. (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523, 486–490
CrossRef
Google scholar
|
[33] |
Jia, G., Preussner, J., Chen, X., Guenther, S., Yuan, X., Yekelchyk, M., Kuenne, C., Looso, M., Zhou, Y., Teichmann, S.,
CrossRef
Google scholar
|
[34] |
Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L. and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959
CrossRef
Google scholar
|
[35] |
Demichelis, F., Setlur, S. R., Banerjee, S., Chakravarty, D., Chen, J. Y. H., Chen, C. X., Huang, J., Beltran, H., Oldridge, D. A., Kitabayashi, N.,
CrossRef
Google scholar
|
/
〈 | 〉 |