WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets

Sheng Wang, Zhen Li, Yizhou Yu, Xin Gao

PDF(902 KB)
PDF(902 KB)
Quant. Biol. ›› 2018, Vol. 6 ›› Issue (4) : 359-368. DOI: 10.1007/s40484-018-0155-4
METHODOLOGY ARTICLE
METHODOLOGY ARTICLE

WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets

Author information +
History +

Abstract

Background: The Oxford MinION nanopore sequencer is the recently appealing third-generation genome sequencing device that is portable and no larger than a cellphone. Despite the benefits of MinION to sequence ultra-long reads in real-time, the high error rate of the existing base-calling methods, especially indels (insertions and deletions), prevents its use in a variety of applications.

Methods: In this paper, we show that such indel errors are largely due to the segmentation process on the input electrical current signal from MinION. All existing methods conduct segmentation and nucleotide label prediction in a sequential manner, in which the errors accumulated in the first step will irreversibly influence the final base-calling. We further show that the indel issue can be significantly reduced via accurate labeling of nucleotide and move labels directly from the raw signal, which can then be efficiently learned by a bi-directional WaveNet model simultaneously through feature sharing. Our bi-directional WaveNet model with residual blocks and skip connections is able to capture the extremely long dependency in the raw signal. Taking the predicted move as the segmentation guidance, we employ the Viterbi decoding to obtain the final base-calling results from the smoothed nucleotide probability matrix.

Results: Our proposed base-caller, WaveNano, achieves good performance on real MinION sequencing data from Lambda phage.

Conclusions: The signal-level nanopore base-caller WaveNano can obtain higher base-calling accuracy, and generate fewer insertions/deletions in the base-called sequences.

Graphical abstract

Keywords

nanopore sequencing / bi-directional WaveNets / base-calling / third generation sequencing / deep learning

Cite this article

Download citation ▾
Sheng Wang, Zhen Li, Yizhou Yu, Xin Gao. WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets. Quant. Biol., 2018, 6(4): 359‒368 https://doi.org/10.1007/s40484-018-0155-4

References

[1]
Cao, M. D., Nguyen, S. H., Ganesamoorthy, D., Elliott, A. G., Cooper, M. A. and Coin, L. J. (2017) Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nat. Commun., 8, 14515
CrossRef Pubmed Google scholar
[2]
Loman, N. J., Quick, J. and Simpson, J. T. (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods, 12, 733–735
CrossRef Pubmed Google scholar
[3]
Li, Y., Han, R., Bi, C., Li, M., Wang, S. and Gao, X. (2018) DeepSimulator: a deep simulator for nanopore sequencing. Bioinformatics, 34, 2899–2908
CrossRef Pubmed Google scholar
[4]
Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B. and Akeson, M. (2015) Improved data analysis for the MinION nanopore sequencer. Nat. Methods, 12, 351–356
CrossRef Pubmed Google scholar
[5]
Lu, H., Giordano, F. and Ning, Z. (2016) Oxford Nanopore MinION sequencing and genome assembly. Genom. Proteom. Bioinf., 14, 265–279
CrossRef Pubmed Google scholar
[6]
Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., Bore, J. A., Koundouno, R., Dudas, G., Mikhail, A., (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature, 530, 228–232
CrossRef Pubmed Google scholar
[7]
Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L., Smith, D. J., Botkin, D. J., (2017) Nanopore DNA sequencing and genome assembly on the International Space Station. Sci. Rep., 7, 18022
CrossRef Pubmed Google scholar
[8]
Loose, M., Malla, S. and Stout, M. (2016) Real-time selective sequencing using nanopore technology. Nat. Methods, 13, 751–754
CrossRef Pubmed Google scholar
[9]
Jain, M., Olsen, H. E., Paten, B. and Akeson, M. (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol., 17, 239
CrossRef Pubmed Google scholar
[10]
Goodwin, S.,Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C. and McCombie, W. R. (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res., 25, 1750–1756
CrossRef Pubmed Google scholar
[11]
Sovic, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S. and Nagarajan, N. (2016) Fast and sensitive mapping of error-prone nanopore sequencing reads with GraphMap. Nat Commun., 7, 11307
CrossRef Google scholar
[12]
Szalay, T. and Golovchenko, J. A. (2015) De novo sequencing and variant calling with nanopores using PoreSeq. Nat. Biotechnol., 33, 1087–1091
CrossRef Pubmed Google scholar
[13]
David, M., Dursi, L. J., Yao, D., Boutros, P. C. and Simpson, J. T. (2017) Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics, 33, 49–55
CrossRef Pubmed Google scholar
[14]
Boža, V., Brejová, B. and Vinař, T. (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 12, e0178751
CrossRef Pubmed Google scholar
[15]
Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu K. (2016) Wavenet: A generative model for raw audio. ArXiv, 1609.03499
[16]
Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural Comput., 9, 1735–1780
CrossRef Pubmed Google scholar
[17]
Chung, J., Gulcehre, C., Cho, K. H. and Bengio, Y. (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv, 1412.3555
[18]
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, 521, 436–444
CrossRef Pubmed Google scholar
[19]
He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas
[20]
Hirschberg, J. and Manning, C. D. (2015) Advances in natural language processing. Science, 349, 261–266
CrossRef Pubmed Google scholar
[21]
Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324
CrossRef Pubmed Google scholar
[22]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
CrossRef Pubmed Google scholar
[23]
Pearson, W. R. and Miller, W. (1992) Dynamic programming algorithms for biological sequence comparison. In Methods in Enzymology. pp. 575–601, Elsevier
[24]
Wang, S., Ma, J. and Xu, J. (2016) AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics, 32, i672–i679
CrossRef Pubmed Google scholar
[25]
McIntyre, A. B., Rizzardi, L., Yu, A. M., Alexander, N., Rosen, G. L., Botkin, D. J., Stahl, S. E., John, K. K., Castro-Wallace, S. L., McGrath, K., (2016) Nanopore sequencing in microgravity. npj Microgravity, 2, 16035
[26]
Teng, H., Cao, M. D., Hall, M. B., Duarte, T., Wang, S. and Coin, L. J. M. (2018) Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience, 7, giy037
CrossRef Pubmed Google scholar
[27]
Han, R., Li, Y., Wang, S. and Gao, X. (2017) An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing. bioRxiv, 238857
[28]
van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K. (2016) Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems
[29]
Wang S., Sun S., and Xu J. (2016) AUC-maximized deep convolutional neural fields for protein sequence labeling. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer Science, Frasconi P., Landwehr N., Manco G., Vreeken J. (eds) vol 9852. Springer, Cham
[30]
Calders T., and Jaroszewicz S. (2007) Efficient AUC optimization for classification. In Knowledge Discovery in Databases: PKDD 2007. Lecture Notes in Computer Science, Kok J. N., Koronacki J., Lopez de Mantaras R., Matwin S., Mladenič D., Skowron A. (eds), vol 4702. Springer, Berlin, Heidelberg

ACKNOWLEDGEMENTS

We thank Minh Duc Cao and Lachlan J.M. Coin for providing the nanopore sequencing data for the Lambda phage sample. We thank Haotian Teng for providing helpful discussions. This work was supported by the Kind Abdullah Unviersity of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Awards No. FCC/1/1976-04, URF/1/2601-01, URF/1/3007-01, URF/1/3412-01 and URF/1/3450-01.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Sheng Wang, Zhen Li, Yizhou Yu and Xin Gao declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(902 KB)

Accesses

Citations

Detail

Sections
Recommended

/