WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets
Sheng Wang, Zhen Li, Yizhou Yu, Xin Gao
WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets
Background: The Oxford MinION nanopore sequencer is the recently appealing third-generation genome sequencing device that is portable and no larger than a cellphone. Despite the benefits of MinION to sequence ultra-long reads in real-time, the high error rate of the existing base-calling methods, especially indels (insertions and deletions), prevents its use in a variety of applications.
Methods: In this paper, we show that such indel errors are largely due to the segmentation process on the input electrical current signal from MinION. All existing methods conduct segmentation and nucleotide label prediction in a sequential manner, in which the errors accumulated in the first step will irreversibly influence the final base-calling. We further show that the indel issue can be significantly reduced via accurate labeling of nucleotide and move labels directly from the raw signal, which can then be efficiently learned by a bi-directional WaveNet model simultaneously through feature sharing. Our bi-directional WaveNet model with residual blocks and skip connections is able to capture the extremely long dependency in the raw signal. Taking the predicted move as the segmentation guidance, we employ the Viterbi decoding to obtain the final base-calling results from the smoothed nucleotide probability matrix.
Results: Our proposed base-caller, WaveNano, achieves good performance on real MinION sequencing data from Lambda phage.
Conclusions: The signal-level nanopore base-caller WaveNano can obtain higher base-calling accuracy, and generate fewer insertions/deletions in the base-called sequences.
nanopore sequencing / bi-directional WaveNets / base-calling / third generation sequencing / deep learning
[1] |
Cao, M. D., Nguyen, S. H., Ganesamoorthy, D., Elliott, A. G., Cooper, M. A. and Coin, L. J. (2017) Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nat. Commun., 8, 14515
CrossRef
Pubmed
Google scholar
|
[2] |
Loman, N. J., Quick, J. and Simpson, J. T. (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods, 12, 733–735
CrossRef
Pubmed
Google scholar
|
[3] |
Li, Y., Han, R., Bi, C., Li, M., Wang, S. and Gao, X. (2018) DeepSimulator: a deep simulator for nanopore sequencing. Bioinformatics, 34, 2899–2908
CrossRef
Pubmed
Google scholar
|
[4] |
Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B. and Akeson, M. (2015) Improved data analysis for the MinION nanopore sequencer. Nat. Methods, 12, 351–356
CrossRef
Pubmed
Google scholar
|
[5] |
Lu, H., Giordano, F. and Ning, Z. (2016) Oxford Nanopore MinION sequencing and genome assembly. Genom. Proteom. Bioinf., 14, 265–279
CrossRef
Pubmed
Google scholar
|
[6] |
Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., Bore, J. A., Koundouno, R., Dudas, G., Mikhail, A.,
CrossRef
Pubmed
Google scholar
|
[7] |
Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L., Smith, D. J., Botkin, D. J.,
CrossRef
Pubmed
Google scholar
|
[8] |
Loose, M., Malla, S. and Stout, M. (2016) Real-time selective sequencing using nanopore technology. Nat. Methods, 13, 751–754
CrossRef
Pubmed
Google scholar
|
[9] |
Jain, M., Olsen, H. E., Paten, B. and Akeson, M. (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol., 17, 239
CrossRef
Pubmed
Google scholar
|
[10] |
Goodwin, S.,Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C. and McCombie, W. R. (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res., 25, 1750–1756
CrossRef
Pubmed
Google scholar
|
[11] |
Sovic, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S. and Nagarajan, N. (2016) Fast and sensitive mapping of error-prone nanopore sequencing reads with GraphMap. Nat Commun., 7, 11307
CrossRef
Google scholar
|
[12] |
Szalay, T. and Golovchenko, J. A. (2015) De novo sequencing and variant calling with nanopores using PoreSeq. Nat. Biotechnol., 33, 1087–1091
CrossRef
Pubmed
Google scholar
|
[13] |
David, M., Dursi, L. J., Yao, D., Boutros, P. C. and Simpson, J. T. (2017) Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics, 33, 49–55
CrossRef
Pubmed
Google scholar
|
[14] |
Boža, V., Brejová, B. and Vinař, T. (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 12, e0178751
CrossRef
Pubmed
Google scholar
|
[15] |
Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu K. (2016) Wavenet: A generative model for raw audio. ArXiv, 1609.03499
|
[16] |
Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural Comput., 9, 1735–1780
CrossRef
Pubmed
Google scholar
|
[17] |
Chung, J., Gulcehre, C., Cho, K. H. and Bengio, Y. (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv, 1412.3555
|
[18] |
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature, 521, 436–444
CrossRef
Pubmed
Google scholar
|
[19] |
He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas
|
[20] |
Hirschberg, J. and Manning, C. D. (2015) Advances in natural language processing. Science, 349, 261–266
CrossRef
Pubmed
Google scholar
|
[21] |
Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324
CrossRef
Pubmed
Google scholar
|
[22] |
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
CrossRef
Pubmed
Google scholar
|
[23] |
Pearson, W. R. and Miller, W. (1992) Dynamic programming algorithms for biological sequence comparison. In Methods in Enzymology. pp. 575–601, Elsevier
|
[24] |
Wang, S., Ma, J. and Xu, J. (2016) AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics, 32, i672–i679
CrossRef
Pubmed
Google scholar
|
[25] |
McIntyre, A. B., Rizzardi, L., Yu, A. M., Alexander, N., Rosen, G. L., Botkin, D. J., Stahl, S. E., John, K. K., Castro-Wallace, S. L., McGrath, K.,
|
[26] |
Teng, H., Cao, M. D., Hall, M. B., Duarte, T., Wang, S. and Coin, L. J. M. (2018) Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience, 7, giy037
CrossRef
Pubmed
Google scholar
|
[27] |
Han, R., Li, Y., Wang, S. and Gao, X. (2017) An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing. bioRxiv, 238857
|
[28] |
van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K. (2016) Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems
|
[29] |
Wang S., Sun S., and Xu J. (2016) AUC-maximized deep convolutional neural fields for protein sequence labeling. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016. Lecture Notes in Computer Science, Frasconi P., Landwehr N., Manco G., Vreeken J. (eds) vol 9852. Springer, Cham
|
[30] |
Calders T., and Jaroszewicz S. (2007) Efficient AUC optimization for classification. In Knowledge Discovery in Databases: PKDD 2007. Lecture Notes in Computer Science, Kok J. N., Koronacki J., Lopez de Mantaras R., Matwin S., Mladenič D., Skowron A. (eds), vol 4702. Springer, Berlin, Heidelberg
|
/
〈 | 〉 |