Please wait a minute...

Quantitative Biology

Quant. Biol.
Metabolic pathway databases and model repositories
Abraham A. Labena1,2, Yi-Zhou Gao1, Chuan Dong3, Hong-li Hua3, Feng-Biao Guo3()
1. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
2. College of Computational and Natural Sciences, Dilla University, Dilla, Ethiopia
3. School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
Download: PDF(183 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Background: The number of biological Knowledge bases/databases storing metabolic pathway information and models has been growing rapidly. These resources are diverse in the type of information/data, the analytical tools, and objectives. Here we present a review of the most popular metabolic pathway databases and model repositories, focusing on their scope, content including reactions, enzymes, compounds, and genes, and applicability. The review aims to help researchers choose a suitable database or model repository according to the information and data required, by providing an insight look of each pathway resource.

Results: Four pathways databases and three model repositories were selected on the basis of popularity and diversity. Our review showed that the pathway resources vary in many aspects, such as their scope, content, access to data and the tools. In addition, inconsistencies have been observed in nomenclature and representation of database entities. The three model repositories reviewed do not offer a brief description of the models’ characteristics such as simulation conditions.

Conclusions: The inconsistencies among the databases in representing their contents may hamper the maximal use of the knowledge accumulated in these databases in particular and the area of systems biology at large. Therefore, it is strongly recommended that the database creators and the metabolic network models developers should follow international standards for the nomenclature of reactions and metabolites. Besides, computationally generated models that could be obtained from model repositories should be utilized with manual curations as they lack some important components that are necessary for full functionality of the models.

Keywords metabolic pathway      database      model repository     
Corresponding Authors: Feng-Biao Guo   
Online First Date: 14 September 2017   
 Cite this article:   
Abraham A. Labena,Yi-Zhou Gao,Chuan Dong, et al. Metabolic pathway databases and model repositories[J]. Quant. Biol., 14 September 2017. [Epub ahead of print] doi: 10.1007/s40484-017-0108-3.
E-mail this article
E-mail Alert
Articles by authors
Abraham A. Labena
Yi-Zhou Gao
Chuan Dong
Hong-li Hua
Feng-Biao Guo
Arabidopsis ReactomeCurated knowledge base of plant biological pathways
AtIPDArabidopsis thaliana isoprenoid pathway database
BiGGKnowledge base of genome-scale metabolic network models
BioCycA collection of pathway/genome databases (PGDBs) and software tools for understanding their data
BioModelsOnline reference repository for quantitative, dynamic models of biological network models
BioPathDatabase on biochemical pathways
BioSilicoA web-based database system that facilitates the search and analysis of metabolic pathways
BRENDAComprehensive enzyme information system
BsubCycDatabase of the bacterium? Bacillus subtilis and is based on the updated? B. subtilis 168 genome sequence and annotation
CATHACycMetabolic pathway database of Catharanthus roseus
ECMDBEscherichia coli metabolome database
EcoCycEncyclopedia of E.coligenes and metabolism
EcoCycScientific database for the bacterium? E. coli K-12 MG1655
ENZYMEA repository of information relative to the nomenclature of enzymes
ExPASyBiochemical pathway maps
FlyReactomeA curated knowledgebase of Drosophila melanogaster pathways
HMDBThe human metabolome database
HPDAn integrated human pathway database
HUMANCycAn encyclopedic reference on human metabolic pathways
KaPPA-View4Kazusa Plant Pathway Viewer
KEGGKyoto Encyclopedia of Genes and Genomes
LAMPLibrary of Apicomplexan metabolic pathways
LIPID MAPSLIPID metabolites and pathways strategy
MaizeGDBMetabolic pathways in maize
MalariaMalaria parasite metabolic pathways
MedicCycA biochemical pathway database for Medicago truncatula
MetaCycKnowledge of experimentally validated metabolic pathways
MetaNetX/MetanetX.?orgRepository and webserver for genome-scale metabolic network models
MetNetDBContains information on networks of metabolic and regulatory and interactions in Arabidopsis
MMMDBMouse multiple tissue metabolome database
Model SEEDWeb-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic pathway models
MouseCycManually curated database of both known and predicted metabolic pathways for the laboratory mouse
PathCasePathways database system
PC2Pathway Commons 2 (integrates a number of pathway and molecular interaction databases supporting BioPAX and PSI-MI formats into one large BioPAX model)
PMNPlant metabolic network
ReactomeA free, open-source, curated and peer-reviewed pathway database
RGBRat resource center
SABIO-RKBiochemical reaction kinetics database
SSERSpecies specific essential reactions database
UniPathWayMetabolic pathways database
YEASTNETA?consensus reconstruction of yeast metabolism
YMDBYeast metabolome database
Tab.1  List of available metabolic pathway resources
Tab.2  Contents of the databases
ReactomePathway browser• A tool for visualizing and interacting with Reactome biological pathways
Analyze data• Merges pathway identifier mapping, over-representation, and expression analysis tools ?into a single tabbed data analysis portal with integrated visualization and summary ?features, which can accept a gene, protein or small molecule list, or an expression ?dataset
Species comparison• Allows users to compare pathways between human and any of the other species inferred ?from Reactome by orthology
Reactome FI network• Cytoscape plugin designed to find network patterns related to cancer and other types of ?diseases
MetaCycPathway tools• Development of organism-specific databases
• Metabolic reconstruction and modeling
• Scientific visualization, web publishing
• Visual analysis of gene expression and metabolomics datasets
• Computational inferences
• Comparative genome and pathway analyses
• Analysis of biological networks
PMNE2P2• Enzyme function annotation software. Predicts metabolic enzymes in a sequenced ?genome
SAVI• Pathway validation software. Processes predicted metabolic pathways using pathway ?metadata such as taxonomic distribution and key reactions and makes decisions about ?which pathways to keep, remove, or subject to manual validation
KEGGPlantClusterFinder• A pipeline to predict metabolic gene clusters from plant genomes
KegHier• Java application for browsing BRITE hierarchy files
KegArray• Java application for microarray data analysis
KegDraw• Java application for drawing compound and glycan structures
Tab.3  Comparison of the databases based on additional functions
BiGGEscher map and model validation toolIt is a web-based tool for building, viewing and sharing visualizations of biological pathways
BioModelsPath2Models (automatic generation of GSM)It automatically generates metabolic models from biochemical pathway maps
MetaNetXFlux balance analysis (FBA), flux variability analysis (FVA), group of coupled reactions (GCR), reaction knock-out (RKO), peptide/gene knock-out (PKO), gap-filling (GAP), predict direction (DIR)A web-based resource for accessing, analysing and manipulating genome-scale metabolic networks. It also provides interactive comaprison of two or more models and interates data from various public resources
Tab.4  Comparison of tools in model repositories
1 Berg,J. M.,Tymoczko,J. L.and Stryer,L. (2002) Metabolism Is Composed of Many Coupled, Interconnecting Reactions. In Biochemistry. 5th ed. New York: Lippincott Williams & Wilkins
2 Wren,J. D. and Bateman,A. (2008) Databases, data tombs and dust in the wind.Bioinformatics, 24, 2127–2128
doi: 10.1093/bioinformatics/btn464 pmid: 18819940
3 Likić,V. A. (2006) Databases of metabolic pathways.Biochem. Mol. Biol. Educ., 34, 408–412
doi: 10.1002/bmb.2006.494034062680 pmid: 21638732
4 Stobbe,M. D., Houten,S. M., Jansen,G. A., van Kampen,A. H. and Moerland,P. D. (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration.BMC Syst. Biol., 5, 165
doi: 10.1186/1752-0509-5-165 pmid: 21999653
5 Stobbe,M. D. (2015) Metabolic Pathway Databases: A Word of Caution. In Computational Systems Toxicology. Hoeng, J., Peitsch, M.C,eds. pp. 27–63. New York: Springer
6 Orth,J. D., Conrad,T. M., Na,J., Lerman,J. A., Nam,H., Feist,A. M. and Palsson,B. Ø. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011.Mol. Syst. Biol., 7, 535
doi: 10.1038/msb.2011.65 pmid: 21988831
7 Thiele,I., Vo,T. D., Price,N. D. and Palsson,B. O. (2005) Expanded metabolic reconstruction of Helicobacter pylori(iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants.J. Bacteriol., 187, 5818–5830
doi: 10.1128/JB.187.16.5818-5830.2005 pmid: 16077130
8 Henry,C. S., Zinner,J. F., Cohoon,M. P. and Stevens,R. L. (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations.Genome Biol., 10, R69
doi: 10.1186/gb-2009-10-6-r69 pmid: 19555510
9 Radrich,K., Tsuruoka,Y., Dobson,P., Gevorgyan,A., Swainston,N., Baart,G. and Schwartz,J.-M. (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks.BMC Syst. Biol., 4, 114
doi: 10.1186/1752-0509-4-114 pmid: 20712863
10 Zhang,C. and Hua,Q. (2015)Applications of genome-scale metabolic models in biotechnology and systems medicine.  Front. Physiol., 6, 413
doi: 10.3389/fphys.2015.00413
11 Liu,L., Agren,R., Bordel,S. and Nielsen,J. (2010) Use of genome-scale metabolic models for understanding microbial physiology.FEBS Lett., 584, 2556–2564
doi: 10.1016/j.febslet.2010.04.052 pmid: 20420838
12 Ooi,H. S., Schneider,G., Lim,T. T., Chan,Y. L., Eisenhaber,B. and Eisenhaber,F. (2010) Biomolecular pathway databases.Methods Mol. Biol., 609, 129–144
doi: 10.1007/978-1-60327-241-4_8 pmid: 20221917
13 Wittig,U. and De Beuckelaer,A. (2001) Analysis and comparison of metabolic pathway databases.Brief. Bioinform., 2, 126–142
doi: 10.1093/bib/2.2.126 pmid: 11465731
14 Croft,D., Mundo,A. F., Haw,R., Milacic,M., Weiser,J., Wu,G., Caudy,M., Garapati,P., Gillespie,M., Kamdar,M. R., et al. (2014) The Reactome pathway knowledgebase.Nucleic Acids Res., 42, D472–D477
doi: 10.1093/nar/gkt1102 pmid: 24243840
15 Caspi,R., Billington,R., Ferrer,L., Foerster,H., Fulcher,C. A., Keseler,I. M., Kothari,A., Krummenacker,M., Latendresse,M., Mueller,L. A., et al. (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.Nucleic Acids Res., 44, D471–D480
doi: 10.1093/nar/gkv1164 pmid: 26527732
16 Kanehisa,M., Sato,Y., Kawashima,M., Furumichi,M. and Tanabe,M. (2016) KEGG as a reference resource for gene and protein annotation.Nucleic Acids Res., 44, D457–D462
doi: 10.1093/nar/gkv1070 pmid: 26476454
17 Dreher,K. (2014) Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities. In Plant Metabolism: Methods and Protocols.Sriram G. Totowa, ed., pp. 151–171. NJ: Humana Press
18 King,Z. A., Lu,J., Dräger,A., Miller,P., Federowicz,S., Lerman,J. A., Ebrahim,A., Palsson,B. O. and Lewis,N. E. (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models.Nucleic Acids Res., 44, D515–D522
doi: 10.1093/nar/gkv1049 pmid: 26476456
19 Chelliah,V., Laibe,C. and Le Novère,N. (2013) BioModels Database: a repository of mathematical models of biological processes.Methods Mol. Biol., 1021, 189–199
doi: 10.1007/978-1-62703-450-0_10 pmid: 23715986
20 Ganter,M., Bernard,T., Moretti,S., Stelling,J. and Pagni,M. (2013) a website and repository for accessing, analysing and manipulating metabolic networks.Bioinformatics, 29, 815–816
doi: 10.1093/bioinformatics/btt036 pmid: 23357920
21 Croft,D., O’Kelly,G., Wu,G., Haw,R., Gillespie,M., Matthews,L., Caudy,M., Garapati,P., Gopinath,G., Jassal,B., et al. (2011) Reactome: a database of reactions, pathways and biological processes.Nucleic Acids Res., 39, D691–D697
doi: 10.1093/nar/gkq1018 pmid: 21067998
22 Fabregat,A., Sidiropoulos,K., Garapati,P., Gillespie,M., Hausmann,K., Haw,R., Jassal,B., Jupe,S., Korninger,F., McKay,S., et al. (2016) The Reactome pathway Knowledgebase.Nucleic Acids Res., 44, D481–D487
doi: 10.1093/nar/gkv1351 pmid: 26656494
23 Naithani,S., Preece,J., D’Eustachio,P., Gupta,P., Amarasinghe,V., Dharmawardhana,P. D., Wu,G., Fabregat,A., Elser,J. L., Weiser,J., et al. (2017) Plant Reactome: a resource for plant pathways and comparative analysis.Nucleic Acids Res., 45, D1029–D1039
doi: pmid: 27799469
24 Caspi,R., Altman,T., Dreher,K., Fulcher,C. A., Subhraveti,P., Keseler,I. M., Kothari,A., Krummenacker,M., Latendresse,M., Mueller,L. A., et al. (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.Nucleic Acids Res., 40, D742–D753
doi: 10.1093/nar/gkr1014 pmid: 22102576
25 Caspi,R., Altman,T., Billington,R., Dreher,K., Foerster,H., Fulcher,C. A., Holland,T. A., Keseler,I. M., Kothari,A., Kubo,A., et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases.Nucleic Acids Res., 42, D459–D471
doi: 10.1093/nar/gkt1103 pmid: 24225315
26 Caspi,R., Altman,T., Dale,J. M., Dreher,K., Fulcher,C. A., Gilham,F., Kaipa,P., Karthikeyan,A. S., Kothari,A., Krummenacker,M., et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.Nucleic Acids Res., 38, D473–D479
doi: 10.1093/nar/gkp875 pmid: 19850718
27 Christie,K. R., Weng,S., Balakrishnan,R., Costanzo,M. C., Dolinski,K., Dwight,S. S., Engel,S. R., Feierbach,B., Fisk,D. G., Hirschman,J. E., et al. (2004) SaccharomycesGenome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms.Nucleic Acids Res., 32, D311–D314
doi: 10.1093/nar/gkh033 pmid: 14681421
28 Mueller,L. A., Zhang,P. and Rhee,S. Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis.Plant Physiol., 132, 453–460
doi: 10.1104/pp.102.017236 pmid: 12805578
29 Liang,C., Jaiswal,P., Hebbard,C., Avraham,S., Buckler,E. S., Casstevens,T., Hurwitz,B., McCouch,S., Ni,J., Pujar,A., et al. (2008) Gramene: a growing plant comparative genomics resource.Nucleic Acids Res., 36, D947–D953
doi: 10.1093/nar/gkm968 pmid: 17984077
30 Evsikov,A. V., Dolan,M. E., Genrich,M. P., Patek,E. and Bult,C. J. (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse.Genome Biol., 10, R84
doi: 10.1186/gb-2009-10-8-r84 pmid: 19682380
31 Seo,S. and Lewin,H. A. (2009) Reconstruction of metabolic pathways for the cattle genome.BMC Syst. Biol., 3, 33
doi: 10.1186/1752-0509-3-33 pmid: 19284618
32 Urbanczyk-Wochniak,E. and Sumner,L. W. (2007) MedicCyc: a biochemical pathway database for Medicago truncatula.Bioinformatics, 23, 1418–1423
doi: 10.1093/bioinformatics/btm040 pmid: 17344243
33 Zhang,P., Dreher,K., Karthikeyan,A., Chi,A., Pujar,A., Caspi,R., Karp,P., Kirkup,V., Latendresse,M., Lee,C., et al. (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants.Plant Physiol., 153, 1479–1491
doi: 10.1104/pp.110.157396 pmid: 20522724
34 Fey,P., Gaudet,P., Curk,T., Zupan,B., Just,E. M., Basu,S., Merchant,S. N., Bushmanova,Y. A., Shaulsky,G., Kibbe,W. A., et al. (2009) dictyBase—a Dictyostelium bioinformatics resource update.Nucleic Acids Res., 37, D515–D519
doi: 10.1093/nar/gkn844 pmid: 18974179
35 Doyle,M. A., MacRae,J. I., De Souza,D. P., Saunders,E. C., McConville,M. J. and Likić,V. A. (2009) LeishCyc: a biochemical pathways database for Leishmania major.BMC Syst. Biol., 3, 57
doi: 10.1186/1752-0509-3-57 pmid: 19497128
36 May,P., Christian,J. O., Kempa,S. and Walther,D. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.BMC Genomics, 10, 209
doi: 10.1186/1471-2164-10-209 pmid: 19409111
37 Bombarely,A., Menda,N., Tecle,I. Y., Buels,R. M., Strickler,S., Fischer-York,T., Pujar,A., Leto,J., Gosselin,J. and Mueller,L. A. (2011) The Sol Genomics Network ( growing tomatoes using Perl.Nucleic Acids Res., 39, D1149–D1155
doi: 10.1093/nar/gkq866 pmid: 20935049
38 Snyder,E. E., Kampanya,N., Lu,J., Nordberg,E. K., Karur,H. R., Shukla,M., Soneja,J., Tian,Y., Xue,T., Yoo,H., et al. (2007) PATRIC: the VBI PathoSystems Resource Integration Center.Nucleic Acids Res., 35, D401–D406
doi: 10.1093/nar/gkl858 pmid: 17142235
39 Vincent, J., Dai, Z., Ravel, C., Choulet, F., Mouzeyar, S., Bouzidi,M. F., Agier, M. and Martre, P. (2013) dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts.Database (Oxford). 2013, bat014
doi: 10.1093/database/bat014
40 Obertello,M., Shrivastava,S., Katari,M. S. and Coruzzi,G. M. (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice.Plant Physiol., 168, 1830–1843
doi: 10.1104/pp.114.255877 pmid: 26045464
41 Shiratake,K. and Suzuki,M. (2016) Omics studies of citrus, grape and rosaceae fruit trees.Breed. Sci., 66, 122–138
doi: 10.1270/jsbbs.66.122 pmid: 27069397
42 Cho,K., Cho,K. S., Sohn,H. B., Ha,I. J., Hong,S. Y., Lee,H., Kim,Y. M. and Nam,M. H. (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation.J. Exp. Bot., 67, 1519–1533
doi: 10.1093/jxb/erv549 pmid: 26733692
43 Chae,L., Kim,T., Nilo-Poyanco,R. and Rhee,S. Y. (2014) Genomic signatures of specialized metabolism in plants.Science, 344, 510–513
doi: 10.1126/science.1252076 pmid: 24786077
44 Tzfadia,O., Amar,D., Bradbury,L. M. T., Wurtzel,E. T. and Shamir,R. (2012) The MORPH algorithm: ranking candidate genes for membership in Arabidopsisand tomato pathways.Plant Cell, 24, 4389–4406
doi: 10.1105/tpc.112.104513 pmid: 23204403
45 Kanehisa,M., Goto,S., Sato,Y., Kawashima,M., Furumichi,M. and Tanabe,M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG.Nucleic Acids Res., 42, D199–D205
doi: 10.1093/nar/gkt1076 pmid: 24214961
46 Schmeier,S., Alam,T., Essack,M. and Bajic,V. B. (2017) TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions.Nucleic Acids Res.,45, D145–D150
doi: pmid: 27789689
47 Li,P., Tompkins,R. G. and Xiao,W. (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res.,45, D908–D914
48 Wang,Y., Xu,L., Thilmony,R., You,F. M., Gu,Y. Q. and Coleman-Derr,D. (2016) PIECE 2.0: an update for the plant gene structure comparison and evolution database.Nucleic Acids Res., 45, 1015–1020
doi: pmid: 27742820
49 Kotera,M., Hirakawa,M., Tokimatsu,T., Goto,S. and Kanehisa,M. (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals.Methods Mol. Biol., 802, 19–39
doi: 10.1007/978-1-61779-400-1_2 pmid: 22130871
50 Bianco,L., Riccadonna,S., Lavezzo,E., Falda,M., Formentin,E., Cavalieri,D., Toppo,S. and Fontana,P. (2016) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms.Bioinformatics, btw636
doi: 10.1093/bioinformatics/btw636 pmid: 27795226
51 Li,S., Shui,K., Zhang,Y., Lv,Y., Deng,W., Ullah,S., Zhang,L. and Xue,Y. (2016) CGDB: a database of circadian genes in eukaryotes.Nucleic Acids Res.,45, D397–D403
doi: pmid: 27789706
52 Chen,I. A., Markowitz,V. M., Chu,K., Palaniappan,K., Szeto,E., Pillay,M., Ratner,A., Huang,J., Andersen,E., Huntemann,M., et al. (2017) IMG/M: integrated genome and metagenome comparative data analysis system.Nucleic Acids Res.,45, D507–D516
doi: pmid: 27738135
53 Saa,P. A. and Nielsen,L. K. (2016) Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.Bioinformatics, 32, 3807–3814
doi: 10.1093/bioinformatics/btw555 pmid: 27559155
54 Rose,P. W., Prlic,A., Altunkaya,A., Bi,C., Bradley,A. R., Christie,C. H., Costanzo,L. D., Duarte,J. M., Dutta,S., Feng,Z.,et al. (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information.Nucleic Acids Res.,45, D271–D281
doi: pmid: 27794042
55 Büchel,F., Rodriguez,N., Swainston,N., Wrzodek,C., Czauderna,T., Keller,R., Mittag,F., Schubert,M., Glont,M., Golebiewski,M.,et al. (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps.BMC Syst. Biol., 7, 116
doi: 10.1186/1752-0509-7-116 pmid: 24180668
56 Naldi,A., Monteiro,P. T., Müssel,C., the Consortium for Logical Models and Tools,Kestler,H. A., Thieffry,D., Xenarios,I., Saez-Rodriguez,J., Helikar,T. and Chaouiya,C. (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo.Bioinformatics, 31, 1154–1159
doi: 10.1093/bioinformatics/btv013 pmid: 25619997
57 Le Novère,N. (2015) Quantitative and logic modelling of molecular and gene networks.Nat. Rev. Genet., 16, 146–158
doi: 10.1038/nrg3885 pmid: 25645874
58 Zhang,P., Tao,L., Zeng,X., Qin,C., Chen,S., Zhu,F., Li,Z., Jiang,Y., Chen,W. and Chen,Y. Z. (2016) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks.Brief. Bioinform., bbw071
doi: 10.1093/bib/bbw071 pmid: 27542402
59 Moretti,S., Martin,O., Van Du Tran,T., Bridge,A., Morgat,A. and Pagni,M. (2016) MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks.Nucleic Acids Res., 44, D523–D526
doi: 10.1093/nar/gkv1117 pmid: 26527720
60 Ye,Y. N., Ma,B. G., Dong,C., Zhang,H., Chen,L. L. and Guo,F. B. (2016) A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network.Sci. Rep., 6, 35082
doi: 10.1038/srep35082 pmid: 27713529
61 Thompson,R. A., Dahal,S., Garcia,S., Nookaew,I. and Trinh,C. T. (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model ofClostridium thermocellumDSM 1313 implementing an adjustable cellulosome.Biotechnol. Biofuels, 9, 194
doi: 10.1186/s13068-016-0607-x pmid: 27602057
62 van Heck,R. G., Ganter,M., Martins Dos Santos,V. A. and Stelling,J. (2016) Efficient reconstruction of predictive consensus metabolic network models.PLoS Comput. Biol., 12, e1005085
doi: 10.1371/journal.pcbi.1005085 pmid: 27563720
Related articles from Frontiers Journals
[1] Minoru Kanehisa. Automated interpretation of metabolic capacity from genome and metagenome sequences[J]. Quant Biol, 2013, 1(3): 192-200.
Full text