Developing bioimaging and quantitative methods to study 3D genome

Juntao Gao , Xusan Yang , Mohamed Nadhir Djekidel , Yang Wang , Peng Xi , Michael Q. Zhang

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 129 -147.

PDF (2526KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 129 -147. DOI: 10.1007/s40484-016-0065-2
REVIEW
REVIEW

Developing bioimaging and quantitative methods to study 3D genome

Author information +
History +
PDF (2526KB)

Abstract

The recent advances in chromosome configuration capture (3C)-based series molecular methods and optical super-resolution (SR) techniques offer powerful tools to investigate three dimensional (3D) genomic structure in prokaryotic and eukaryotic cell nucleus. In this review, we focus on the progress during the last decade in this exciting field. Here we at first introduce briefly genome organization at chromosome, domain and sub-domain level, respectively; then we provide a short introduction to various super-resolution microscopy techniques which can be employed to detect genome 3D structure. We also reviewed the progress of quantitative and visualization tools to evaluate and visualize chromatin interactions in 3D genome derived from Hi-C data. We end up with the discussion that imaging methods and 3C-based molecular methods are not mutually exclusive - - - - actually they are complemental to each other and can be combined together to study 3D genome organization.

Graphical abstract

Keywords

3D Genome / quantitative methods / bioimaging / super resolution

Cite this article

Download citation ▾
Juntao Gao, Xusan Yang, Mohamed Nadhir Djekidel, Yang Wang, Peng Xi, Michael Q. Zhang. Developing bioimaging and quantitative methods to study 3D genome. Quant. Biol., 2016, 4(2): 129-147 DOI:10.1007/s40484-016-0065-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular Biology of the Cell New. 4th Ed., York: Garland Science

[2]

Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389, 251–260

[3]

Li, G. and Reinberg, D. (2011) Chromatin higher-order structures and gene regulation. Curr. Opin. Genet. Dev., 21, 175–186

[4]

Thakar, A., Gupta, P., Ishibashi, T., Finn, R., Silva-Moreno, B., Uchiyama, S., Fukui, K., Tomschik, M., Ausio, J. and Zlatanova, J. (2009) H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry (Mosc.), 48, 10852–10857

[5]

Sahl, S. J. and Moerner, W. E. (2013) Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol., 23, 778–787

[6]

Yamanaka, M., Smith, N. I. and Fujita, K. (2014) Introduction to super-resolution microscopy. Microscopy, 63, 177–192

[7]

Doksani, Y., Wu, J. Y., de Lange, T. and Zhuang, X. (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent t-loop formation. Cell, 155, 345–356

[8]

Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science, 295, 1306–1311

[9]

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380

[10]

Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. and Chen, L. (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol., 30, 90–98

[11]

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293

[12]

Zhang, Y., McCord, R. P., Ho, Y.-J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W. and Dekker, J. (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 148, 908–921

[13]

Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2, 292–301

[14]

Funabiki, H., Hagan, I., Uzawa, S. and Yanagida, M. (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol., 121, 961–976

[15]

Mizuguchi, T., Barrowman, J. and Grewal, S. I. S. (2015) Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett., 589, 2975–2986

[16]

Rabl, C. (1885) Über Zelltheilung. Morphol. Jahrb., 10, 214–330

[17]

Jin, Q.-W., Fuchs, J. and Loidl, J. (2000) Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci., 113, 1903–1912

[18]

Cremer, T. (2013) Von der Zellenlehre zur Chromosomentheorie: Naturwissenschaftliche Erkenntnis und Theorienwechsel in der frühen Zell- und Vererbungsforschung. Berlin: Springer-Verlag

[19]

Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H. and Sedat, J. W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J. Cell Biol., 102, 112–123

[20]

Zickler, D. and Kleckner, N. (1998) The leptotene-zygotene transition of meiosis. Annu. Rev. Genet., 32, 619–697

[21]

Jin, Q., Trelles-Sticken, E., Scherthan, H. and Loidl, J. (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol., 141, 21–29

[22]

Noguchi, J. and Fukui, K. (1995) Chromatin arrangements in intact interphase nuclei examined by laser confocal microscopy. J. Plant Res., 108, 209–216

[23]

Wilkie, G. S., Shermoen, A. W., O’Farrell, P. H. and Davis, I. (1999) Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Curr. Biol., 9, 1263–1266

[24]

Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Müller, S., Eils, R., Cremer, C., Speicher, M. R., (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol., 3, e157

[25]

Boyle, S., Gilchrist, S., Bridger, J. M., Mahy, N. L., Ellis, J. A. and Bickmore, W. A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet., 10, 211–219

[26]

Küpper, K., Kölbl, A., Biener, D., Dittrich, S., von Hase, J., Thormeyer, T., FieglerH., Carter, N. P., Speicher, M. R., Cremer, T., (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma, 116, 285–306

[27]

Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P. and Bickmore, W. A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol., 145, 1119–1131

[28]

Fraser, J., Williamson, I., Bickmore, W. A. and Dostie, J. (2015) An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev., 79, 347–372

[29]

Kreth, G., Finsterle, J., von Hase, J., Cremer, M. and Cremer, C. (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys. J., 86, 2803–2812

[30]

Bridger, J. M., Boyle, S., Kill, I. R. and Bickmore, W. A. (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol., 10, 149–152

[31]

Mehta, I. S., Amira, M., Harvey, A. J. and Bridger, J. M. (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol., 11, R5

[32]

Nagele, R., Freeman, T., McMorrow, L. and Lee, H. Y. (1995) Precise spatial positioning of chromosomes during prometaphase: evidence for chromosomal order. Science, 270, 1831–1835

[33]

Nagele, R. G., Freeman, T., Fazekas, J., Lee, K. M., Thomson, Z. and Lee, H. Y. (1998) Chromosome spatial order in human cells: evidence for early origin and faithful propagation. Chromosoma, 107, 330–338

[34]

Bickmore, W. A. (2013) The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet., 14, 67–84

[35]

Habermann, F. A., CremerM., Walter, J., Kreth, G., von Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T. and Solovei, I. (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res., 9, 569–584

[36]

Sun, H. B. and Yokota, H. (1999) Correlated positioning of homologous chromosomes in daughter fibroblast cells. Chromosome Res., 7, 603–610

[37]

Gerlich, D., Beaudouin, J., Kalbfuss, B., Daigle, N., Eils, R. and Ellenberg, J. (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell, 112, 751–764

[38]

Manders, E. M., Kimura, H. and Cook, P. R. (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J. Cell Biol., 144, 813–821

[39]

Allison, D. C. and Nestor, A. L. (1999) Evidence for a relatively random array of human chromosomes on the mitotic ring. J. Cell Biol., 145, 1–14

[40]

Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. and Cremer, T. (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol., 160, 685–697

[41]

Strickfaden, H., Zunhammer, A., van Koningsbruggen, S., Köhler, D. and Cremer, T. (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus, 1, 284–297

[42]

Umbarger, M. A., Toro, E., Wright, M. A., Porreca, G. J., Baù D., Hong, S.-H., Fero, M. J., Zhu, L. J., Marti-Renom, M. A., McAdams, H. H., (2011) The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell, 44, 252–264

[43]

Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367

[44]

Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M. and Jacobsen, S. E. (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell, 55, 694–707

[45]

Filippova, D., Patro, R., Duggal, G. and Kingsford, C. (2014) Identification of alternative topological domains in chromatin. Algorithms Mol. Biol., 9, 14

[46]

Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S. K., Ong, C.-T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295

[47]

Hell, S. W. and Wichmann, J. (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780

[48]

Klar, T. A. and Hell, S. W. (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett., 24, 954

[49]

Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332–1336

[50]

Hafi, N., Grunwald, M., van den Heuvel, L. S., Aspelmeier, T., Chen, J.-H., Zagrebelsky, M., Schütte, O. M., Steinem, C., Korte, M., Munk, A., (2014) Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods, 11, 579–584

[51]

Cox, S., Rosten, E., Monypenny, J., Jovanovic-Talisman, T., Burnette, D. T., Lippincott-SchwartzJ., Jones, G. E. and Heintzmann, R. (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods, 9, 195–200

[52]

Zhu, L., Zhang, W., Elnatan, D. and Huang, B. (2012) Faster STORM using compressed sensing. Nat. Methods, 9, 721–723

[53]

Jungmann, R., Avendaño, M. S., Woehrstein, J. B., Dai, M., Shih, W. M. and Yin, P. (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods, 11, 313–318

[54]

Sharonov, A. and Hochstrasser, R. M. (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA, 103, 18911–18916

[55]

Henriques, R., Lelek, M., Fornasiero, E. F., Valtorta, F., Zimmer, C. and Mhlanga, M. M. (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in Image. J. Nat. Methods, 7, 339–340

[56]

Schoen, I., Ries, J., Klotzsch, E., Ewers, H. and Vogel, V. (2011) Binding-activated localization microscopy of DNA structures. Nano Lett., 11, 4008–4011

[57]

Geissbuehler, S., Bocchio, N. L., Dellagiacoma, C., Berclaz, C., Leutenegger, M. and Lasser, T. (2012) Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanoscopy, 1, 1–7

[58]

Hu, Y. S., Nan, X., Sengupta, P., Lippincott-Schwartz, J. and Cang, H. (2013) Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nat. Methods, 10, 96–97

[59]

Wang, Y., Fruhwirth, G., Cai, E., Ng, T. and Selvin, P. R. (2013) 3D super-resolution imaging with blinking quantum dots. Nano Lett., 13, 5233–5241

[60]

Ribeiro, S. A., Vagnarelli, P., Dong, Y., Hori, T., McEwen, B. F., Fukagawa, T., Flors, C. and Earnshaw, W. C. (2010) A super-resolution map of the vertebrate kinetochore. Proc. Natl. Acad. Sci. USA, 107, 10484–10489

[61]

Matsuda, A., Shao, L., Boulanger, J., Kervrann, C., Carlton, P. M., Kner, P., Agard, D. and Sedat, J. W. (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones. PLoS One, 5, e12768

[62]

Bohn, M., Diesinger, P., Kaufmann, R., Weiland, Y., Müller, P., Gunkel, M., von Ketteler, A., Lemmer, P., Hausmann, M., Heermann, D. W., (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys. J., 99, 1358–1367

[63]

Gunkel, M., Erdel, F., Rippe, K., Lemmer, P., Kaufmann, R., Hörmann, C., Amberger, R. and Cremer, C. (2009) Dual color localization microscopy of cellular nanostructures. Biotechnol. J., 4, 927–938

[64]

Ptacin, J. L., Lee, S. F., Garner, E. C., Toro, E., Eckart, M., Comolli, L. R., Moerner, W. E. and Shapiro, L. (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol., 12, 791–798

[65]

Lee, H. D., Lord, S. J., Iwanaga, S., Zhan, K., Xie, H., Williams, J. C., Wang, H., Bowman, G. R., Goley, E. D., Shapiro, L., (2010) Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J. Am. Chem. Soc., 132, 15099–15101

[66]

Wang, W., Li, G.-W., Chen, C., Xie, X. S. and Zhuang, X. (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science, 333, 1445–1449

[67]

Wombacher, R., Heidbreder, M., van de Linde, S., Sheetz, M. P., Heilemann, M., Cornish, V. W. and Sauer, M. (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat. Methods, 7, 717–719

[68]

Klein, T., Löschberger, A., Proppert, S., Wolter, S., van de Linde, S. and Sauer, M. (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat. Methods, 8, 7–9

[69]

Flors, C. (2010) Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications. Photochem. Photobiol. Sci., 9, 643–648

[70]

Müller, P., Schmitt, E., Jacob, A., Hoheisel, J., Kaufmann, R., Cremer, C. and Hausmann, M. (2010) COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci. Int. J. Mol. Sci., 11, 4094–4105

[71]

Weiland, Y., Lemmer, P. and Cremer, C. (2011) Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures. Chromosome Res., 19, 5–23

[72]

Beliveau, B. J., Boettiger, A. N., Avendaño, M. S., Jungmann, R., McCole, R. B., Joyce, E. F., Kim-Kiselak, C., Bantignies, F., Fonseka, C. Y., Erceg, J., (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun., 6, 7147

[73]

Zhang, H., Chen, L., Yang, X., Wang, M., Jing, Z., Han, H., Zhang, M., Jin, D., Gao, J., and Xi, P. (2016) Orientation mapping super-resolution with polarization demodulation. Light Sci. Appl., (Accepted)

[74]

Liu, Z., Legant, W. R., Chen, B.-C., Li, L., Grimm, J. B., Lavis, L. D., Betzig, E. and Tjian, R. (2014) 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife, 3, e04236

[75]

Smeets, D., Markaki, Y., Schmid, V. J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenet. Chromatin, 7, 8

[76]

Markaki, Y., Smeets, D., Fiedler, S., Schmid, V. J., Schermelleh, L., Cremer, T. and Cremer, M. (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays, 34, 412–426

[77]

Patel, N. S., Rhinn, M., Semprich, C. I., Halley, P. A., Dollé P., Bickmore, W. A. and Storey, K. G. (2013) FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet., 9, e1003614

[78]

Harke, B., Ullal, C. K., Keller, J. and Hell, S. W. (2008) Three-dimensional nanoscopy of colloidal crystals. Nano Lett., 8, 1309–1313

[79]

Yang, X., Tzeng, Y.-K., Zhu, Z., Huang, Z., Chen, X., Liu, Y., Chang, H.-C., Huang, L., Li, W.-D. and Xi, P. (2014) Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. RSC Advances, 4, 11305–11310

[80]

Xie, H., Liu, Y., Jin, D., Santangelo, P. J. and Xi, P. (2013) Analytical description of high-aperture STED resolution with 0–2p vortex phase modulation. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 30, 1640–1645

[81]

Watanabe, S., Punge, A., Hollopeter, G., Willig, K. I., Hobson, R. J., Davis, M. W., Hell, S. W. and Jorgensen, E. M. (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods, 8, 80–84

[82]

Ascoli, C. A., Jacob, T., Crowe, S. and Heidemann, K. (2015) Localization of HDAC1 Using Super-Resolution STED Microscopy. Leica Sci.

[83]

Hu, Y. S., Zhu, Q., Elkins, K., Tse, K., Li, Y., Fitzpatrick, J. A. J., Verma, I. M. and Cang, H. (2013) Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Opt. Nanoscopy, 2, 7

[84]

Gebhardt, J. C. M., Suter, D. M., Roy, R., Zhao, Z. W., Chapman, A. R., BasuS., Maniatis, T. and Xie, X. S. (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods, 10, 421–426

[85]

Zhao, Z. W., Roy, R., Gebhardt, J. C. M., Suter, D. M., Chapman, A. R. and Xie, X. S. (2014) Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc. Natl. Acad. Sci. USA, 111, 681–686

[86]

Chen, B.-C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., Janetopoulos, C., Wu, X. S., Hammer, J. A., Liu, Z., (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998

[87]

O’Sullivan, J. M., Tan-Wong, S. M., Morillon, A., Lee, B., Coles, J., Mellor, J. and Proudfoot, N. J. (2004) Gene loops juxtapose promoters and terminators in yeast. Nat. Genet., 36, 1014–1018

[88]

Ansari, A. and Hampsey, M. (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev., 19, 2969–2978

[89]

Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A. and Bickmore, W. A. (2011) Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res., 19, 901–909

[90]

Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 30, i386–i392

[91]

Wang, Y., Li, Y., Gao, J. and Zhang, M. Q. (2015) A novel method to identify topological domains using Hi-C data. Quant. Biol., 3, 81–89

[92]

Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299–1309

[93]

Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., LeeC. W. H., Ye, C., Ping, J. L. H., Mulawadi, F., (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet., 43, 630–638

[94]

Duggal, G., Wang, H. and Kingsford, C. (2014) Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res., 42, 87–96

[95]

Jhunjhunwala, S., van Zelm, M. C., Peak, M. M., Cutchin, S., Riblet, R., van Dongen, J. J. M., Grosveld, F. G., Knoch, T. A. and Murre, C. (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell, 133, 265–279

[96]

Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A. and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502, 59–64

[97]

Marti-Renom, M. and Mirny, L. (2011) Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput. Biol., 7, e1002125

[98]

Barbieri, M., Chotalia, M., Fraser, J., Lavitas, L.-M., Dostie, J., Pombo, A. and Nicodemi, M. (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA, 109, 16173–16178

[99]

Dekker, J., Marti-Renom, M. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403

[100]

Barbieri, M., Scialdone, A., Piccolo, A., Chiariello, A. M., di Lanno, C., Prisco, A., Pombo, A. and Nicodemi, M. (2013) Polymer models of chromatin organization. Front. Genet., 4, 113

[101]

Zhang, Z., Li, G., Toh, K.-C. and Sung, W.-K. (2013) 3D chromosome modeling with semi-definite programming and Hi-C data. J. Comput. Biol., 20, 831–846

[102]

Varoquaux, N., Ay, F., Noble, W. S. and Vert, J.-P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33

[103]

Rousseau, M., Fraser, J., Ferraiuolo, M. A., Dostie, J. and Blanchette, M. (2011) Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 12, 414

[104]

Lesne, A., Riposo, J., Roger, P., Cournac, A. and Mozziconacci, J. (2014) 3D genome reconstruction from chromosomal contacts. Nat. Methods, 11, 1141–1143

[105]

Paulsen, J., Gramstad, O. and Collas, P. (2015) Manifold based optimization for single-cell 3D genome reconstruction. PLoS Comput. Biol., 11, e1004396

[106]

Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013a) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893

[107]

Baù D., Sanyal, A., Lajoie, B. R., Capriotti, E., Byron, M., Lawrence, J. B., Dekker, J. and Marti-Renom, M. (2011) The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107–114

[108]

Wang, S., Xu, J. and Zeng, J. (2015) Inferential modeling of 3D chromatin structure. Nucleic Acids Res., 43, e54

[109]

DeLano, W. L., Ultsch, M. H., De, A. M., Vos, and Wells, J. A. (2000) Convergent solutions to binding at a protein-protein. Interface Sci., 287, 1279–1283

[110]

Nowotny, J., Wells, A., Xu, L., Cao, R., Trieu, T., He, C., and Cheng, J. (2015). GMOL: An Interactive Tool for 3D Genome Structure Visualization. ArXiv150706383

[111]

Asbury, T. M., Mitman, M., Tang, J. and Zheng, W. J. (2010) Genome3D: A viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinformatics, 11, 444

[112]

Cremer, T. and Cremer, M. (2010) Chromosome territories. Cold Spring Harb. Perspect. Biol., 2, a003889

[113]

Li, G.-W. and Xie, X. S. (2011) Central dogma at the single-molecule level in living cells. Nature, 475, 308–315

[114]

Schmied, J. J., Forthmann, C., Pibiri, E., Lalkens, B., Nickels, P., Liedl, T. and Tinnefeld, P. (2013) DNA origami nanopillars as standards for three-dimensional superresolution microscopy. Nano Lett., 13, 781–785

[115]

Lu, Y., Zhao, J., Zhang, R., Liu, Y., Liu, D., Goldys, E. M., Yang, X., Xi, P., Sunna, A., Lu, J., (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics, 8, 32–36

[116]

Sternberg, S. H. and Doudna, J. A. (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol. Cell, 58, 568–574

[117]

Lomvardas, S., Barnea, G., Pisapia, D. J., Mendelsohn, M., Kirkland, J. and Axel, R. (2006) Interchromosomal interactions and olfactory receptor choice. Cell, 126, 403–413

[118]

Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479–1491

[119]

Li, J., Shou, J., Guo, Y., Tang, Y., Wu, Y., Jia, Z., Zhai, Y., Chen, Z., Xu, Q. and Wu, Q. (2015) Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J. Mol. Cell Biol., 7, 284–298

[120]

Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162, 900–910

[121]

Ma, H., Naseri, A., Reyes-Gutierrez, P., Wolfe, S.A., Zhang, S., and Pederson, T. (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. USA. 112, 3002–3007

[122]

Ma, H., Tu, L.-C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. Advance online publication,

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2526KB)

7126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/