On statistical energy functions for biomolecular modeling and design

Haiyan Liu

Quant. Biol. ›› 2015, Vol. 3 ›› Issue (4) : 157 -167.

PDF (676KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (4) : 157 -167. DOI: 10.1007/s40484-015-0054-x
Review
Review

On statistical energy functions for biomolecular modeling and design

Author information +
History +
PDF (676KB)

Abstract

Statistical energy functions are general models about atomic or residue-level interactions in biomolecules, derived from existing experimental data. They provide quantitative foundations for structural modeling as well as for structure-based protein sequence design. Statistical energy functions can be derived computationally either based on statistical distributions or based on variational assumptions. We present overviews on the theoretical assumptions underlying the various types of approaches. Theoretical considerations underlying important pragmatic choices are discussed.

Graphical abstract

Keywords

potential of mean forces / statistical distribution / optimization / correlated variable / reference state

Cite this article

Download citation ▾
Haiyan Liu. On statistical energy functions for biomolecular modeling and design. Quant. Biol., 2015, 3(4): 157-167 DOI:10.1007/s40484-015-0054-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jacobson, M. and Sali, A. (2004) Comparative protein structure modeling and its applications to drug discovery. Annu. Rep. Med. Chem., 39, 259–276

[2]

Skolnick, J., Zhou, H. and Gao, M. (2013) Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Curr. Opin. Struct. Biol., 23, 191–197

[3]

DiMaio, F., Echols, N., Headd, J. J., Terwilliger, T. C., Adams,P. D. and Baker,D. (2013) Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods,10, 1102–1104

[4]

Koellhoffer, J. F., Higgins, C. D. and Lai, J. R. (2014) Protein engineering strategies for the development of viral vaccines and immunotherapeutics. FEBS Lett., 588, 298–307

[5]

Brooks,B. R., Brooks, C. L., Mackerell, A. D. Jr, Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., (2009) CHARMM: the biomolecular simulation program. J. Comput. Chem., 30, 1545–1614

[6]

Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Kräutler, V., Oostenbrink, C., (2005) The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem., 26, 1719–1751

[7]

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A. (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc., 117, 5179–5197

[8]

Sippl, M. J. (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol., 213, 859–883

[9]

Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G. and Sippl, M. J. (1990) Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. Mol. Biol., 216, 167–180

[10]

Bowie, J. U., Lüthy, R. and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164–170

[11]

Lu, H. and Skolnick, J. (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins, 44, 223–232

[12]

Jiang, L., Gao, Y., Mao, F., Liu, Z. and Lai, L. (2002) Potential of mean force for protein-protein interaction studies. Proteins, 46, 190–196

[13]

Zhang, C., Liu, S., Zhou, H. and Zhou, Y. (2004) An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci., 13, 400–411

[14]

Russ, W. P. and Ranganathan, R. (2002) Knowledge-based potential functions in protein design. Curr. Opin. Struct. Biol., 12, 447–452

[15]

Li, Z., Yang, Y., Zhan, J., Dai, L. and Zhou, Y. (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu. Rev. Biophys., 42, 315–335

[16]

Xiong, P., Wang, M., Zhou, X., Zhang, T., Zhang, J., Chen, Q. and Liu, H. (2014) Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat. Commun., 5, 5330

[17]

Lazaridis, T. and Karplus, M. (2000) Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol., 10, 139–145

[18]

Simons, K. T., Ruczinski, I., Kooperberg, C., Fox, B. A., Bystroff, C. and Baker, D. (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins, 34, 82–95

[19]

Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. and Baker, D. (2004) Protein structure prediction using Rosetta. Methods Enzymol., 383, 66–93

[20]

Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L. and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368

[21]

Zhou, Y., Zhou, H., Zhang, C. and Liu, S. (2006) What is a desirable statistical energy function for proteins and how can it be obtained? Cell Biochem. Biophys., 46, 165–174

[22]

Boas, F. E. and Harbury, P. B. (2007) Potential energy functions for protein design. Curr. Opin. Struct. Biol., 17, 199–204

[23]

Chen, T. S. and Keating, A. E. (2012) Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Protein Sci., 21, 949–963

[24]

Das, R. and Baker, D. (2008) Macromolecular modeling with rosetta. Annu. Rev. Biochem., 77, 363–382

[25]

Fan, H., Schneidman-Duhovny, D., Irwin, J. J., Dong, G., Shoichet, B. K. and Sali, A. (2011) Statistical potential for modeling and ranking of protein-ligand interactions. J. Chem. Inf. Model., 51, 3078–3092

[26]

Shen, M. Y. and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci., 15, 2507–2524

[27]

Floudas, C. A., Fung, H. K., McAllister, S. R., Monnigmann, M. and Rajgaria, R. (2006) Advances in protein structure prediction and de novo protein design: A review. Chem. Eng. Sci., 61, 966–988

[28]

Moal, I. H., Moretti, R., Baker, D. and Fernández-Recio, J. (2013) Scoring functions for protein-protein interactions. Curr. Opin. Struct. Biol., 23, 862–867

[29]

Koretke, K. K., Luthey-Schulten, Z. and Wolynes, P. G. (1998) Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. USA, 95, 2932–2937

[30]

Noid, W. G. (2013) Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys., 139, 090901

[31]

Hamelryck, T., Borg, M., Paluszewski, M., Paulsen, J., Frellsen, J., Andreetta, C., Boomsma, W., Bottaro, S. and Ferkinghoff-Borg, J. (2010) Potentials of mean force for protein structure prediction vindicated, formalized and generalized. PLoS One, 5, e13714

[32]

Zhang, J. and Zhang, Y. (2010) A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS One, 5, e15386

[33]

Deng, H., Jia, Y., Wei, Y. and Zhang, Y. (2012) What is the best reference state for designing statistical atomic potentials in protein structure prediction? Proteins, 80, 2311–2322

[34]

Zhang, Y. and Skolnick, J. (2004) SPICKER: a clustering approach to identify near-native protein folds. J. Comput. Chem., 25, 865–871

[35]

Chuang, G. Y., Kozakov, D., Brenke, R., Comeau, S. R. and Vajda, S. (2008) DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophys. J., 95, 4217–4227

[36]

Bastolla, U., Farwer, J., Knapp, E. W. and Vendruscolo, M. (2001) How to guarantee optimal stability for most representative structures in the Protein Data Bank. Proteins, 44, 79–96

[37]

Chae, M. H., Krull, F. and Knapp, E. W. (2015) Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction. Proteins, 83, 881–890

[38]

Wu, Y., Lu, M., Chen, M., Li, J. and Ma, J. (2007) OPUS-Ca: a knowledge-based potential function requiring only Calpha positions. Protein Sci., 16, 1449–1463

[39]

Kortemme, T., Morozov, A. V. and Baker, D. (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol., 326, 1239–1259

[40]

Zhou, H. and Skolnick, J. (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys. J., 101, 2043–2052

[41]

Carlsen, M., Koehl, P. and Røgen, P. (2014) On the importance of the distance measures used to train and test knowledge-based potentials for proteins. PLoS One, 9, e109335

[42]

Kozakov, D., Brenke, R., Landon, M. R., Comeau, S. R. and Vajda, S. (2007) Development of dars (decoys as the reference state) potentials for docking and scoring. Abstr. Pap. Am. Chem. Soc., 233, 239–239.

[43]

Miyazawa, S. and Jernigan, R. L. (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol., 256, 623–644

[44]

Karchin, R., Cline, M. and Karplus, K. (2004) Evaluation of local structure alphabets based on residue burial. Proteins, 55, 508–518

[45]

de Brevern, A. G., Valadié H., Hazout, S. and Etchebest, C. (2002) Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci., 11, 2871–2886

[46]

Li, Q., Zhou, C. and Liu, H. (2009) Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities. Proteins, 74, 820–836

[47]

DeBartolo, J., Dutta, S., Reich, L. and Keating, A. E. (2012) Predictive Bcl-2 family binding models rooted in experiment or structure. J. Mol. Biol., 422, 124–144

[48]

Bazzoli, A., Tettamanzi, A. G. B. and Zhang, Y. (2011) Computational protein design and large-scale assessment by I-TASSER structure assembly simulations. J. Mol. Biol., 407, 764–776

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (676KB)

1698

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/