On statistical energy functions for biomolecular modeling and design

Haiyan Liu

PDF(676 KB)
PDF(676 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (4) : 157-167. DOI: 10.1007/s40484-015-0054-x
Review
Review

On statistical energy functions for biomolecular modeling and design

Author information +
History +

Abstract

Statistical energy functions are general models about atomic or residue-level interactions in biomolecules, derived from existing experimental data. They provide quantitative foundations for structural modeling as well as for structure-based protein sequence design. Statistical energy functions can be derived computationally either based on statistical distributions or based on variational assumptions. We present overviews on the theoretical assumptions underlying the various types of approaches. Theoretical considerations underlying important pragmatic choices are discussed.

Graphical abstract

Keywords

potential of mean forces / statistical distribution / optimization / correlated variable / reference state

Cite this article

Download citation ▾
Haiyan Liu. On statistical energy functions for biomolecular modeling and design. Quant. Biol., 2015, 3(4): 157‒167 https://doi.org/10.1007/s40484-015-0054-x

References

[1]
Jacobson, M. and Sali, A. (2004) Comparative protein structure modeling and its applications to drug discovery. Annu. Rep. Med. Chem., 39, 259–276
CrossRef Google scholar
[2]
Skolnick, J., Zhou, H. and Gao, M. (2013) Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Curr. Opin. Struct. Biol., 23, 191–197
CrossRef Pubmed Google scholar
[3]
DiMaio, F., Echols, N., Headd, J. J., Terwilliger, T. C., Adams,P. D. and Baker,D. (2013) Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods,10, 1102–1104
CrossRef Pubmed Google scholar
[4]
Koellhoffer, J. F., Higgins, C. D. and Lai, J. R. (2014) Protein engineering strategies for the development of viral vaccines and immunotherapeutics. FEBS Lett., 588, 298–307
CrossRef Pubmed Google scholar
[5]
Brooks,B. R., Brooks, C. L., Mackerell, A. D. Jr, Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., (2009) CHARMM: the biomolecular simulation program. J. Comput. Chem., 30, 1545–1614
CrossRef Pubmed Google scholar
[6]
Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Kräutler, V., Oostenbrink, C., (2005) The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem., 26, 1719–1751
CrossRef Pubmed Google scholar
[7]
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A. (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc., 117, 5179–5197
CrossRef Google scholar
[8]
Sippl, M. J. (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol., 213, 859–883
CrossRef Pubmed Google scholar
[9]
Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher, K., Casari, G. and Sippl, M. J. (1990) Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. Mol. Biol., 216, 167–180
CrossRef Pubmed Google scholar
[10]
Bowie, J. U., Lüthy, R. and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164–170
CrossRef Pubmed Google scholar
[11]
Lu, H. and Skolnick, J. (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins, 44, 223–232
CrossRef Pubmed Google scholar
[12]
Jiang, L., Gao, Y., Mao, F., Liu, Z. and Lai, L. (2002) Potential of mean force for protein-protein interaction studies. Proteins, 46, 190–196
CrossRef Pubmed Google scholar
[13]
Zhang, C., Liu, S., Zhou, H. and Zhou, Y. (2004) An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci., 13, 400–411
CrossRef Pubmed Google scholar
[14]
Russ, W. P. and Ranganathan, R. (2002) Knowledge-based potential functions in protein design. Curr. Opin. Struct. Biol., 12, 447–452
CrossRef Pubmed Google scholar
[15]
Li, Z., Yang, Y., Zhan, J., Dai, L. and Zhou, Y. (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu. Rev. Biophys., 42, 315–335
CrossRef Pubmed Google scholar
[16]
Xiong, P., Wang, M., Zhou, X., Zhang, T., Zhang, J., Chen, Q. and Liu, H. (2014) Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat. Commun., 5, 5330
CrossRef Pubmed Google scholar
[17]
Lazaridis, T. and Karplus, M. (2000) Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol., 10, 139–145
CrossRef Pubmed Google scholar
[18]
Simons, K. T., Ruczinski, I., Kooperberg, C., Fox, B. A., Bystroff, C. and Baker, D. (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins, 34, 82–95
CrossRef Pubmed Google scholar
[19]
Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. and Baker, D. (2004) Protein structure prediction using Rosetta. Methods Enzymol., 383, 66–93
CrossRef Pubmed Google scholar
[20]
Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L. and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368
CrossRef Pubmed Google scholar
[21]
Zhou, Y., Zhou, H., Zhang, C. and Liu, S. (2006) What is a desirable statistical energy function for proteins and how can it be obtained? Cell Biochem. Biophys., 46, 165–174
CrossRef Pubmed Google scholar
[22]
Boas, F. E. and Harbury, P. B. (2007) Potential energy functions for protein design. Curr. Opin. Struct. Biol., 17, 199–204
CrossRef Pubmed Google scholar
[23]
Chen, T. S. and Keating, A. E. (2012) Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Protein Sci., 21, 949–963
CrossRef Pubmed Google scholar
[24]
Das, R. and Baker, D. (2008) Macromolecular modeling with rosetta. Annu. Rev. Biochem., 77, 363–382
CrossRef Pubmed Google scholar
[25]
Fan, H., Schneidman-Duhovny, D., Irwin, J. J., Dong, G., Shoichet, B. K. and Sali, A. (2011) Statistical potential for modeling and ranking of protein-ligand interactions. J. Chem. Inf. Model., 51, 3078–3092
CrossRef Pubmed Google scholar
[26]
Shen, M. Y. and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci., 15, 2507–2524
CrossRef Pubmed Google scholar
[27]
Floudas, C. A., Fung, H. K., McAllister, S. R., Monnigmann, M. and Rajgaria, R. (2006) Advances in protein structure prediction and de novo protein design: A review. Chem. Eng. Sci., 61, 966–988
CrossRef Google scholar
[28]
Moal, I. H., Moretti, R., Baker, D. and Fernández-Recio, J. (2013) Scoring functions for protein-protein interactions. Curr. Opin. Struct. Biol., 23, 862–867
CrossRef Pubmed Google scholar
[29]
Koretke, K. K., Luthey-Schulten, Z. and Wolynes, P. G. (1998) Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. USA, 95, 2932–2937
CrossRef Pubmed Google scholar
[30]
Noid, W. G. (2013) Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys., 139, 090901
CrossRef Pubmed Google scholar
[31]
Hamelryck, T., Borg, M., Paluszewski, M., Paulsen, J., Frellsen, J., Andreetta, C., Boomsma, W., Bottaro, S. and Ferkinghoff-Borg, J. (2010) Potentials of mean force for protein structure prediction vindicated, formalized and generalized. PLoS One, 5, e13714
CrossRef Pubmed Google scholar
[32]
Zhang, J. and Zhang, Y. (2010) A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS One, 5, e15386
CrossRef Pubmed Google scholar
[33]
Deng, H., Jia, Y., Wei, Y. and Zhang, Y. (2012) What is the best reference state for designing statistical atomic potentials in protein structure prediction? Proteins, 80, 2311–2322
CrossRef Pubmed Google scholar
[34]
Zhang, Y. and Skolnick, J. (2004) SPICKER: a clustering approach to identify near-native protein folds. J. Comput. Chem., 25, 865–871
CrossRef Pubmed Google scholar
[35]
Chuang, G. Y., Kozakov, D., Brenke, R., Comeau, S. R. and Vajda, S. (2008) DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophys. J., 95, 4217–4227
CrossRef Pubmed Google scholar
[36]
Bastolla, U., Farwer, J., Knapp, E. W. and Vendruscolo, M. (2001) How to guarantee optimal stability for most representative structures in the Protein Data Bank. Proteins, 44, 79–96
CrossRef Pubmed Google scholar
[37]
Chae, M. H., Krull, F. and Knapp, E. W. (2015) Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction. Proteins, 83, 881–890
CrossRef Pubmed Google scholar
[38]
Wu, Y., Lu, M., Chen, M., Li, J. and Ma, J. (2007) OPUS-Ca: a knowledge-based potential function requiring only Calpha positions. Protein Sci., 16, 1449–1463
CrossRef Pubmed Google scholar
[39]
Kortemme, T., Morozov, A. V. and Baker, D. (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol., 326, 1239–1259
CrossRef Pubmed Google scholar
[40]
Zhou, H. and Skolnick, J. (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys. J., 101, 2043–2052
CrossRef Pubmed Google scholar
[41]
Carlsen, M., Koehl, P. and Røgen, P. (2014) On the importance of the distance measures used to train and test knowledge-based potentials for proteins. PLoS One, 9, e109335
CrossRef Pubmed Google scholar
[42]
Kozakov, D., Brenke, R., Landon, M. R., Comeau, S. R. and Vajda, S. (2007) Development of dars (decoys as the reference state) potentials for docking and scoring. Abstr. Pap. Am. Chem. Soc., 233, 239–239.
[43]
Miyazawa, S. and Jernigan, R. L. (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol., 256, 623–644
CrossRef Pubmed Google scholar
[44]
Karchin, R., Cline, M. and Karplus, K. (2004) Evaluation of local structure alphabets based on residue burial. Proteins, 55, 508–518
CrossRef Pubmed Google scholar
[45]
de Brevern, A. G., Valadié, H., Hazout, S. and Etchebest, C. (2002) Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship. Protein Sci., 11, 2871–2886
CrossRef Pubmed Google scholar
[46]
Li, Q., Zhou, C. and Liu, H. (2009) Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities. Proteins, 74, 820–836
CrossRef Pubmed Google scholar
[47]
DeBartolo, J., Dutta, S., Reich, L. and Keating, A. E. (2012) Predictive Bcl-2 family binding models rooted in experiment or structure. J. Mol. Biol., 422, 124–144
CrossRef Pubmed Google scholar
[48]
Bazzoli, A., Tettamanzi, A. G. B. and Zhang, Y. (2011) Computational protein design and large-scale assessment by I-TASSER structure assembly simulations. J. Mol. Biol., 407, 764–776
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work has been supported by National Natural Science Foundation of China (Grant Nos 31370755 and 21173203) and the Chinese Ministry of Science and Technology (Grant No. 2012AA02A704).

COMPLIANCE WITH ETHICS GUIDELINES

The author Haiyan Liu declare that he has no conflict of interests.
This article does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(676 KB)

Accesses

Citations

Detail

Sections
Recommended

/